	. 490 -	of 18		9709_w18_qp_1
Showing all necessary working 4	g, solve the equation $\begin{pmatrix} -3 \\ -2 \end{pmatrix}$	ion $4x - 11x^{\frac{1}{2}} +$	6 = 0.	[3
$(4n^{k}-$	3) (n³	2-2)	5 0	
n ^½ =	= 3/4	oR	ny	=2
/n =	%	GR	(n=	4

A line has equation y = x + 1 and a curve has equation $y = x^2 + bx + 5$. Find the set of values of the constant b for which the line meets the curve. [4]

 $N+1=N^2+bn+5$

n'+6n-n+4=0

 $\Delta = (b-1)^2 - 16 \ge 0$

(6-1) > 16

b-1 > 4 OR b-1 <-4

(b ≥ 5) OR (b ≤ -3)

3 Two points A and B have coordinates (3a, -a) and (-a, 2a) respectively, where a is a positive constant.

(i) Find the equation of the line through the origin parallel to AB.

[2]

-4

(ii) The length of the line AB is $3\frac{1}{3}$ units. Find the value of a.

[3]

$$AB^2 = 16 a^2 + 9a^2 = \frac{100}{9}$$

 $25a^2 = 100$

 $\alpha^2 = \frac{4}{9}$

 $(\alpha = \frac{2}{3})$

4 The first term of a series is 6 and the second term is 2.

(i) For the case where the series is an arithmetic progression, find the sum of the first 80 terms. [3]

AP: a=6 d=4

= 40×(12-79×4) -12160

(ii) For the case where the series is a geometric progression, find the sum to infinity. [2]

 $CTP \qquad a = 6$ $r = \frac{2}{6} = \frac{1}{3}$

 $S_{\infty} = \frac{6}{1-1/3} = 9$

5 (i) Show that the equation

$$\frac{\cos \theta - 4}{\sin \theta} - \frac{4 \sin \theta}{5 \cos \theta - 2} = 0$$

may be expressed as $9\cos^2\theta - 22\cos\theta + 4 = 0$.

[3]

$$|e+(o(0)=y, \sin^2(0)=|-y^2|$$

$$(y-4)(5y-2)-4\sin(9)=0$$

C	(os ²	(6)	- 22	(2)	(4)	+4	=0

 W	M	uneal	•	
)		

(ii) Hence solve the equation

$$\frac{\cos \theta - 4}{\sin \theta} - \frac{4 \sin \theta}{5 \cos \theta - 2} = 0$$

for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$. [3]

A curve has a stationary point at $(3, 9\frac{1}{2})$ and has an equation for which $\frac{dy}{dx} = ax^2 + a^2x$, where a is a non-zero constant.

- - $\frac{3}{3} = -27 + \frac{81}{3} + c$
 - (c = -4)
 - $y = -n^3 + \frac{9}{2}n^2 4$

(iii)	Determine, showing all necessary working, the nature of the stationary point. [2]
(111)	12. 4
	$\frac{d9}{dx^2} = -6x + 9$
	= -6(3) + 9 < 0
	maximum

The diagram shows part of the curve with equation $y = k(x^3 - 7x^2 + 12x)$ for some constant k. The curve intersects the line y = x at the origin O and at the point A(2, 2).

(i)	Find the value of k .	[1]	
(-/		r-1	

2= K	8-28+24)	

2=		(K= 1/2	
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

(iii) Find, showing all necessary working, the area of the shaded region.

[5]

SHAUED $= \int_{2}^{2} (X^{3}-7x^{2}+12x) - x dx$

 $= \left[\frac{1}{8} \times ^{4} - \frac{7}{6} \times ^{3} + 3 \times ^{2} - \frac{2}{3} \right]_{0}^{2}$

 $= 2 - \frac{56}{6} + 12 - 2$

<u>- 8</u> <u>3</u>

The diagram shows a solid figure OABCDEF having a horizontal rectangular base OABC with OA = 6 units and AB = 3 units. The vertical edges OF, AD and BE have lengths 6 units, 4 units and 4 units respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OF respectively.

(i)	Find \overrightarrow{DF} . [1]
(ii)	Find the unit vector in the direction of \overrightarrow{EF} . [3]

•	••••••
•	
•	••••••
•	
•	
•	
•	•••••
•	
•	
•	•••••••••••
•	 •••••
•	

The diagram shows a triangle OAB in which angle ABO is a right angle, angle $AOB = \frac{1}{5}\pi$ radians and AB = 5 cm. The arc BC is part of a circle with centre A and meets OA at C. The arc CD is part of a circle with centre O and meets OB at OB. Find the area of the shaded region.

- 10 A curve has equation $y = \frac{1}{2}(4x 3)^{-1}$. The point A on the curve has coordinates $(1, \frac{1}{2})$.
 - (i) (a) Find and simplify the equation of the normal through A.

[5]

 $= -2(1)^{-1} = (-2)$

y-1/2 = 1/2 (x-1)

y = ½ ×

[3]

(b) Find the x-coordinate of the point where this normal meets the curve again.

(ii) A point is moving along the curve in such a way that as it passes through A its x-coordinate is decreasing at the rate of 0.3 units per second. Find the rate of change of its y-coordinate at A.

$$\frac{dy}{dt} = \frac{dy}{dn} \frac{dn}{dt} = 0.3 \left(-2(4x-3)^{-2}\right)$$

(a) The one-one function f is defined by $f(x) = (x-3)^2 - 1$ for x < a, where a is a constant. (i) State the greatest possible value of a. [1] (ii) It is given that a takes this greatest possible value. State the range of f and find an expression for $f^{-1}(x)$.

[4]

- **(b)** The function g is defined by $g(x) = (x 3)^2$ for $x \ge 0$.
 - (i) Show that gg(2x) can be expressed in the form $(2x-3)^4 + b(2x-3)^2 + c$, where b and c are constants to be found. [2]

$$g((2\times3)^2) = ((2\times3)^2 - 3)^2$$

$$=(2x-3)^4-6(2x-3)^2+9$$

$$b = -6, c = 9$$

(ii) Hence expand gg(2x) completely, simplifying your answer.

 $09(2x) = (2x)^{4} + 4(2x)^{2}(-3)^{2} + 4(2x)(-3)^{3} + 4(2x)(-3)^{3} + 4(2x)(-3)^{4}$

$$(-6(4x^2-12x+9)+9)$$

 $= 16x^{4} - 96x^{3} + 216x^{2} - 216x + 81$ $- 24x^{2} + 72x - 45$

 $= (16x^4 - 96x^3 + 192x^2 - 144x + 36)$