Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	$6C2 \times (2x)^4 \times \frac{1}{(4x^2)^2}$	B1	SOI SC: Condone errors in $(4^{-1})^2$ evaluation or interpretation for B1 only
	$15 \times 2^4 \times \frac{1}{4^2}$	B1	Identified as required term.
	15	B1	
		3	

Question	Answer	Marks	Guidance
2	Attempt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) \ge 0$	M1	SOI
	(x-2)(x-4)	A1	2 and 4 seen
	(Least possible value of n is) 4	A1	Accept $n = 4$ or $n \ge 4$
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 10x - 3$	B1	
	At $x = 2$, $\frac{dy}{dx} = 24 - 20 - 3 = 1 \rightarrow a = 1$	M1 A1	
	$6 = 2 + b \longrightarrow b = 4$	B1FT	Substitute $x = 2$, $y = 6$ in $y = (their a)x + b$
	$6 = 16 - 20 - 6 + c \rightarrow c = 16$	B1	Substitute $x = 2, y = 6$ into equation of curve
		5	

Question	Answer	Marks	Guidance
4(i)	Identifies common ratio as 1.1	B1	
	Use of $x(1.1)^{20} = 20$	M1	SOI
	$x\left(=\frac{20}{(1.1)^{20}}\right)=3.0$	A1	Accept 2.97
		3	
4(ii)	$their 3.0 \times \frac{\left[\left(1.1 \right)^{21} - 1 \right]}{1.1 - 1} \to 192$	M1 A1	Correct formula used for M mark. Allow 2.97 used from (i) Accept 190 from $x = 2.97$
		2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

October/November 2019

<u>9709_w19_ms_</u>11

Question	Answer	Marks	Guidance
5(i)	$4\tan x + 3\cos x + \frac{1}{\cos x} = 0 \rightarrow 4\sin x + 3\cos^2 x + 1 = 0$	M1	Multiply by $\cos x$ or common denominator of $\cos x$
	$4\sin x + 3(1 - \sin^2 x) + 1 = 0 \implies 3\sin^2 x - 4\sin x - 4 = 0$	M1	Use $\cos^2 x = 1 - \sin^2 x$ and simplify to 3-term quadratic in $\sin x$
	$\sin x = -\frac{2}{3}$	A1	AG
		3	
5(ii)	$2x - 20^\circ = 221.8^\circ, 318.2^\circ$	M1A1	Attempt to solve $sin(2x-20) = -2/3(M1)$. At least 1 correct (A1)
	$x = 120.9^{\circ}, 169.1^{\circ}$	A1 A1FT	FT for 290° – other solution. SC A1 both answers in radians
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
6	Equation of line is $y = mx - 2$	B1	OR
	$x^{2} - 2x + 7 = mx - 2 \rightarrow x^{2} - x(2 + m) + 9 = 0$	M1	
	Apply $b^2 - 4ac(=0) \rightarrow (2+m)^2 - 4 \times 9 (=0)$	*M1	
	m = 4 or -8	A1	
	$m = 4 \rightarrow x^2 - 6x + 9 = 0 \rightarrow x = 3$ $m = -8 \rightarrow x^2 + 6x + 9 = 0 \rightarrow x = -3$	DM1	
	(3, 10), (-3, 22)	A1A1	
	Alternative method for question 6		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2$	B1	
	2x - 2 = m	M1	
	$x^{2} - 2x + 7 = (2x - 2)x - 2 = 2x^{2} - 2x - 2$	M1	
	$x^2 - 9 = 0 \rightarrow x = \pm 3$	A1	
	(3, 10), (-3, 22)	A1A1	
	When $x = 3$, $m = 4$; when $x = -3$, $m = -8$	A1	
		7	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
7(i)	Range of f is $0 < f(x) < 3$	B1B1	OE. Range cannot be defined using x
	Range of g is $g(x) > 2$	B1	OE
		3	
7(ii)	$(fg(x) =)\frac{3}{2(\frac{1}{x}+2)+1} = \frac{3x}{2+5x}$	B1B1	Second B mark implies first B mark
		2	
7(iii)	$y = \frac{3x}{2+5x} \rightarrow 2y + 5xy = 3x \rightarrow 3x - 5xy = 2y$	M1	Correct order of operations
	$x(3-5y)=2y \rightarrow x=\frac{2y}{3-5y}$	M1	Correct order of operations
	$((fg)^{-1}(x)) = \frac{2x}{3-5x}$	A1	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
8(i)	$OA \times \frac{3}{8}\pi = 6$	M1	
	$OA = \frac{16}{\pi} = 5.093(0)$	A1	
8(ii)	$AB = their 5.0930 \times \tan\frac{3}{16}\pi$	M1	
	Perimeter = $2 \times 3.4030 + 6 = 12.8$	A1	
8(iii)	Area $OABC = (2 \times \frac{1}{2}) \times their 5.0930 \times their 3.4030$	M1	
	Area sector = $\frac{1}{2} \times (their 5.0930)^2 \times \frac{3}{8}\pi$	M1	
	Shaded area = $their 17.331 - their 15.279 = 2.05$	M1A1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

	9709	w19	ms	11
--	------	-----	----	----

Question	Answer	Marks	Guidance
9(i)	$y = [(5x-1)^{1/2} \div \frac{3}{2} \div 5] [-2x]$	B1 B1	
	$3 = \frac{27}{(3/2) \times 5} - 4 + c$	M1	Substitute $x = 2, y = 3$
	$c = 7 - \frac{18}{5} = \frac{17}{5} \rightarrow \left(y = \frac{2(5x-1)^3}{15} - 2x + \frac{17}{5} \right)$	A1	
9(ii)	$d^{2}y / dx^{2} = \left[\frac{1}{2}(5x - 1)^{-1/2}\right] [\times 5]$	B1 B1	
9(iii)	$(5x-1)^{1/2} - 2 = 0 \implies 5x-1 = 4$ x = 1	M1A1	Set $\frac{dy}{dx} = 0$ and attempt solution (M1)
	$y = \frac{16}{25} - 2 + \frac{17}{5} = \frac{37}{15}$	A1	Or 2.47 or $\left(1, \frac{37}{15}\right)$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^x} = \frac{5}{2} \times \frac{1}{2} = \frac{5}{4} \ (>0) \text{ hence minimum}$	A1	OE

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
10(i)	$\mathbf{AB} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 9 \end{pmatrix}, \qquad \mathbf{BC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$	B1B1	Condone reversal of labels
	AB.BC = $6 - 6 \rightarrow = 0$ (hence perpendicular)	B1	AG
10(ii)	$\mathbf{DC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}$	B1	Or: $\mathbf{C}\mathbf{D} = \begin{pmatrix} -2\\4\\-6 \end{pmatrix}$
	$\mathbf{AB} = k\mathbf{DC}$	M1	OE Expect $k = \frac{3}{2}$ Or: DC.BC = 4 - 4 = 0 hence <i>BC</i> is also perpendicular to <i>DC</i> Or: AB.DC = 1 or AB.CD = -1, angle between lines is 0 or 180
	<i>AB</i> is parallel to <i>DC</i> , hence <i>ABCD</i> is a trapezium	A1	
10(iii)	$ \mathbf{AB} = \sqrt{9 + 36 + 81} = \sqrt{126} = 11.22$ $ \mathbf{DC} = \sqrt{4 + 16 + 36} = \sqrt{56} = 7.483$ $ \mathbf{BC} = \sqrt{4 + 1 + 0} = \sqrt{5} = 2.236$	M1	Method for finding at least 2 magnitudes
	Area = $\frac{1}{2}$ (<i>theirAB</i> + <i>theirDC</i>)× <i>theirBC</i> = 20.92	M1A1	OE

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
11(i)	$\left(y=\right)\left(x+2\right)^2-1$	B1 DB1	2nd B1 dependent on 2 in bracket
	$x + 2 = (\pm)(y + 1)^{1/2}$	M1	
	$x = -2 + \left(y + 1\right)^{1/2}$	A1	
11(ii)	$x^{2} = 4 + (y+1) - / + 4(y+1)^{\frac{1}{2}}$	*M1A1	SOI. Attempt to find x^2 . The last term can be – or + at this stage
	$(\pi) \int x^{2} (dy) = (\pi) \left[5y + \frac{y^{2}}{2} - \frac{4(y+1)^{\frac{3}{2}}}{\frac{3}{2}} \right]$	A2,1,0	
	$(\pi)\left[15+\frac{9}{2}-\frac{64}{3}-\left(-5+\frac{1}{2}\right)\right]$	DM1	Apply <i>y</i> limits
	$\frac{8\pi}{3}$ or 8.38	A1	