Question	Answer	Marks			
1(i)	State or imply ordinates 0.915929, 1, 1.112485				
	Use correct formula, or equivalent, with $h = 1.2$ and three ordinates				
	Obtain answer 2.42 only	A1			
		3			
1(ii)	Justify the given statement	B1			
		1			

Question	Answer	Marks			
2	Use law for the logarithm of a power or a quotient on the given equation				
	Use $\log_2 8 = 3$ or $2^3 = 8$				
	Obtain $x^2 - 8x - 8 = 0$, or horizontal equivalent	A1			
	Solve a 3-term quadratic equation				
	Obtain final answer $x = 8.90$ only	A1			
		5			

Question	Answer		
3	Use correct $tan(A \pm B)$ formula and express LHS in terms of tan θ	M1	
	Using $\tan 60^\circ = \sqrt{3}$ and $\cot \theta = 1/\tan \theta$, obtain a correct equation in $\tan \theta$ in any form	A1	
	Reduce the equation to one in $\tan^2 \theta$ only	M1	
	Obtain $11\tan^2\theta = 1$, or equivalent	A1	
	Obtain answer 16.8°	A1	
		5	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer					
4(i)	Use correct product or quotient rule or rewrite as $2 \sec x - \tan x$ and differentiate	M1				
	Obtain correct derivative in any form	A1				
	Equate the derivative to zero and solve for <i>x</i>	M1				
	Obtain $x = \frac{1}{6}\pi$	A1				
	Obtain $y = \sqrt{3}$	A1				
		5				
4(ii)	Carry out an appropriate method for determining the nature of a stationary point	M1				
	Show the point is a minimum point with no errors seen	A1				
		2				

Question	Answer			
5	Separate variables and obtain $\int \frac{1}{y} dy = \int \frac{x+2}{x+1} dx$	B1		
	Obtain term ln y	B1		
Use an appropriate method to integrate $(x+2)/(x+1)$				
	Obtain integral $x + \ln(x+1)$, or equivalent, e.g. $\ln(x+1) + x + 1$	A1		
	Use $x = 1$ and $y = 2$ to evaluate a constant, or as limits	DM1		
	Obtain correct solution in x and y in any form e.g. $\ln y = x + \ln(x+1) - 1$	A1		
	Obtain answer $y = (x+1)e^{x-1}$	A1		
		7		

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
6(i)	State or imply $3x^2y + x^3 \frac{dy}{dx}$ as derivative of x^3y	B1
	State or imply $9xy^2 \frac{dy}{dx} + 3y^3$ as derivative of $3xy^3$	B1
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer AG	A1
		4
6(ii)	Equate numerator to zero and use $x = -y$ to obtain an equation in x or in y	M1
	Obtain answer $x = a$ and $y = -a$	A1
	Obtain answer $x = -a$ and $y = a$	A1
	Consider and reject $y = 0$ and $x = y$ as possibilities	B1
		4

Question	Answer	Marks			
7(i)	State modulus 2				
	State argument $-\frac{1}{3}\pi$ or $-60^{\circ}(\frac{5}{3}\pi \text{ or } 300^{\circ})$	B1			
		2			
7(ii)	<i>EITHER:</i> Expand $(1 - (\sqrt{3})i)^3$ completely and process i^2 and i^3				
	Verify that the given relation is satisfied	A1)			
	<i>OR:</i> $u^3 = 2^3 (\cos(-\pi) + i\sin(-\pi))$ or equivalent: follow their answers to (i)	(M1			
	Verify that the given relation is satisfied	A1)			
		2			

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks			
7(iii)	Show a circle with centre $1-(\sqrt{3})i$ in a relatively correct position	B1			
	Show a circle with radius 2 passing through the origin				
	Show the line $\operatorname{Re} z = 2$	B1			
	Shade the correct region	B1			
		4			

Question	Answer				
8(i)	State or imply the form $\frac{A}{1-x} + \frac{B}{2x+3} + \frac{C}{(2x+3)^2}$	B1			
	Use a relevant method to determine a constant	M1			
	Obtain one of the values $A = 1, B = -2, C = 5$	A1			
	Obtain a second value	A1			
	Obtain the third value	A1			
		5			
	[Mark the form $\frac{A}{1-x} + \frac{Dx+E}{(2x+3)^2}$, where $A = 1$, $D = -4$, $E = -1$, B1M1A1A1A1 as above.]				
8(ii)	Use a correct method to find the first two terms of the expansion of $(1-x)^{-1}$, $(1+\frac{2}{3}x)^{-1}$, $(2x+3)^{-1}$, $(1+\frac{2}{3}x)^{-2}$ or $(2x+3)^{-2}$	M1			
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A3 FT			
	Obtain final answer $\frac{8}{9} + \frac{19}{27}x + \frac{13}{9}x^2$, or equivalent	A1			
		5			

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer				
9(i)	Integrate by parts and reach $ax^{\frac{3}{2}} \ln x + b \int x^{\frac{3}{2}} \cdot \frac{1}{x} dx$	*M1			
	Obtain $\frac{2}{3}x^{\frac{3}{2}}\ln x - \frac{2}{3}\int x^{\frac{1}{2}} dx$	A1			
	Obtain integral $\frac{2}{3}x^{\frac{3}{2}}\ln x - \frac{4}{9}x^{\frac{3}{2}}$, or equivalent	A1			
	Substitute limits correctly and equate to 2	DM1			
	Obtain the given answer correctly AG	A1			
		5			
9(ii)	Evaluate a relevant expression or pair of expressions at $x = 2$ and $x = 4$	M1			
	Complete the argument correctly with correct calculated values	A1			
		2			
9(iii)	Use the iterative formula correctly at least once	M1			
	Obtain final answer 3.031	A1			
	Show sufficient iterations to 5 d.p. to justify 3.031 to 3 d.p., or show there is a sign change in the interval (3.0305, 3.0315)	A1			
		3			

Question	Answer					
10(i)	State or imply a correct normal vector to either plane, e.g. $\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ or $2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$	B1				
	Carry out correct process for evaluating the scalar product of two normal vectors	M1				
	Using the correct process for the moduli, divide the scalar product of the two normals by the product of their moduli and evaluate the inverse cosine of the result	M1				
	Obtain final answer 72.5° or 1.26 radians	A1				
		4				
10(ii)	<i>EITHER</i> : Substitute $y = 2$ in both plane equations and solve for x or for z	(M1				
	Obtain $x = 3$ and $z = 1$	A1)				
	<i>OR</i> : Find the equation of the line of intersection of the planes					
	Substitute $y = 2$ in line equation and solve for x or for z	(M1				
	Obtain $x = 3$ and $z = 1$	A1)				

Cambridge International A Level – Mark Scheme PUBLISHED

Question		Answer	Marks
	EITHE	<i>R</i> : Use scalar product to obtain an equation in <i>a</i> , <i>b</i> and <i>c</i> , e.g. $a + b + 3c = 0$	(B1
		Form a second relevant equation, e.g. $2a - 2b + c = 0$, and solve for one ratio, e.g. $a : b$	*M1
		Obtain final answer $a: b: c = 7: 5: -4$	A1
		Use coordinates of A and values of a , b and c in general equation and find d	DM1
		Obtain answer $7x + 5y - 4z = 27$, or equivalent	A1 FT)
	<i>OR</i> 1:	Calculate the vector product of relevant vectors, e.g. $(i + j + 3k) \times (2i - 2j + k)$	(*M1
		Obtain two correct components	A1
		Obtain correct answer, e.g. $7\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}$	A1
		Substitute coordinates of A in plane equation with their normal and find d	DM1
		Obtain answer $7x + 5y - 4z = 27$, or equivalent	A1 FT)
	<i>OR</i> 2:	Using relevant vectors, form a two-parameter equation for the plane	(*M1
		State a correct equation, e.g. $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + 3\mathbf{k}) + \mu(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$	A1 FT
		State 3 correct equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ	A1 FT
		Eliminate λ and μ	DM1
		Obtain answer $7x + 5y - 4z = 27$, or equivalent	A1 FT)
	OR3:	Use the direction vector of the line of intersection of the two planes as normal vector to the plane	(*M1
		Two correct components	A1
		Three correct components	A1
		Substitute coordinates of A in plane equation with their normal and find d	DM1
		Obtain answer $7x + 5y - 4z = 27$, or equivalent	A1 FT)
			7