Ρ	age	ge 4 Mark Scheme				Syllabus	Paper
		Cambridge International AS/A Le	vel – Oc	tober	November 2016	9709	43
1	(i)	PE gain = $50g \times 3.5$ (=1750) [WD = $50g \times 3.5 + 25 \times 3.5$]	B1 M1		For using WD = PE gain + WD against resistance		
		Work done = 1837.5 J or 1840 J	A1	[3]			
	(ii)	[P = 1837.5/2] or [P/v = 50g + 25 and $3.5=2v]$	M1		For using $P = WD/t$ or for using P = Fv and $s = vt$		5
		Power = 919 W	A1	[2]			
2			M1		For resolving horizontally		
			M1		For resolving vertically		
		$T_A \cos 50^\circ - T_B \cos 10^\circ = 0$ and $T_A \sin 50^\circ - T_B \sin 10^\circ - 20 \mathrm{g} = 0$	A1				
			M1		For solving equations to find T_A and T_B		
		Tension in PA is 306 N Tension in PB is 200 N	A1	[5]			
		Alternative (Lami's Theorem)					
		$[T_A/\sin 80^\circ = T_B/\sin 140^\circ = 20g/\sin 140^\circ]$	M1		For applying Lami's Theorem		
		$[T_A=20g\sin 80^\circ/\sin 140^\circ]$	M1		For solving for T_A		
		Tension in PA is 306 N	A1				
		$[T_B=20g\sin 140^\circ/\sin 140^\circ]$	M1		For solving for T_B		
		Tension in PB is 200 N	A1	[5]			

Page	5	Mark Sch		Syllabus	Paper			
		ambridge International AS/A Level – October/November 201			November 2016	9709	43	
3 (i)	[7 01	7g - T = 7a and $T - 3g = 3a$] r $[7g - 3g = 10a]$	M1		For applying Newton's second law to P and to Q or for using $m_Pg - m_Qg = (m_P + m_Q)a$		law to P g =	
	А	cceleration is $4 \mathrm{ms}^{-2}$	A1					
	[ı	$v^2 = 0 + 2 \times 4 \times 0.4$] ($v^2 = 3.2$)	M1		For using $v^2 = u^2 + 2as$			
	S	peed is $1.79\mathrm{ms}^{-1}$	A1	[4]				
(ii)	[0	$0 = 3.2 + 2 \times (-g) \times s] (s = 0.16)$	M1		For using $0 = u^2 + 2(-g)s$			
	0. So it	.16 + 0.4 = 0.56 o particle <i>Q</i> does not come to rest before reaches the pulley	A1	[2]				
	A	lternative						
	[1	$y^2 = 3.2 + 2 \times (-g) \times 0.1$]	M1		For using $v^2 = u^2 + 2(-g)(0.1)$			
	v So it	$=\sqrt{1.2}$ (= 1.10) o particle Q does not come to rest before reaches the pulley	A1	[2]				
4 (i)	S _A	$f_4 = \frac{1}{2}g \times 2.5^2 (= 31.25)$	B1					
	[<i>s</i>	$g_B = 20 \times 1.5 - \frac{1}{2}g \times 1.5^2$] (= 18.75)	M1		For using $s = ut + \frac{1}{2}$	$\sqrt{2} at^2$		
	¹ / ₂ H	$2g \times 2.5^2 + 20 \times 1.5 - \frac{1}{2}g \times 1.5^2$ leight is 50 m AG	A1	[3]				
(ii)	50	$0 = 0.5 g t_A^2 \qquad (t_A = 3.16)$	B1		For using $s = \frac{1}{2} at^2$			
	t _B	$x = \sqrt{10 - 1} = 2.16$	B1					
	$\begin{array}{c} T \\ 0^2 \end{array}$	to top, $s_2^2 = 20^2 - 2gs_B \longrightarrow s_B = 20$	B1					
	T D [<i>s</i>	to top, $[0 = 20 - gt_B] \rightarrow t_B = 2$ bownwards, $g_B = \frac{1}{2}g(0.16)^2] (= 0.13)$	M1		For using $v = u + a$. B and $s = \frac{1}{2}at^2$ to f distance for B	<i>t</i> to find time find downwa	e to top for rds	
	Т	otal distance is 20.1 m	A1	[5]				

Page	ge 6 Mark Scheme				Syllabus	Paper		
	Cambridge International AS/A Leve			ctober	/November 2016	9709	43	
5 (i)	$6t - 0.3t^2 = 0 \rightarrow t = 20 \text{ (or } 0)$							
	[s	$[s = 6t^2/2 - 0.3t^3/3 \ (+C)]$			For integrating $v(t)$	s, v(t) to obtain $s(t)$		
	[s	$[s = 6(20)^2/2 - 0.3(20)^3/3]$			For evaluating $s(t)$ when v=0			
	D	istance OX is 400 m	A1	[4]				
(ii)	$[v = kt - 6t^2 (+C)]$				For integrating $a(t)$ to obtain $v(t)$			
	[s	$= kt^2/2 - 6t^3/3$]	M1*		For integrating $v(t)$ to obtain $s(t)$ and for using $s(0) = 0$			
	[4	$400 = 0.5k \times 10^2 - 2 \times 10^3$]	DM1		For using $t = 10$ and $s = 400$ to form equation in k			
	k:	= 48	A1	[4]				
6 (i)	D	riving force = $160/5$ (= 32 N)	B1					
	[1	$[160/5 - 20 = m \times 0.15]$			For using Newton's Second Law			
	Т	otal mass is 80 kg AG	A1	[3]				
(ii)	[3	$00/v - 20 - 80g\sin^2 = 0$]	M1		For resolving up hi	11		
	Sl	peed is $6.26 \mathrm{ms}^{-1}$ AC	A1	[2]				
(iii)	D 3(riving force = 00/(0.9 × 6.26) (= 53.2 N)	B1					
			M1		For using Newton's	s Second Lav	N	
	30	$00/(0.9 \times 6.26) - 20 - 80g\sin^2 = 80a$	A1					
	A	cceleration is $0.0666 \mathrm{ms}^{-2}$	A1	[4]				

Page 7		Mark Scheme					Paper	
		Cambridge International AS/A Level – October/November 2016					43	
7 (i)	R F	$= 50g\cos 10^{\circ} \text{ and}$ $= 50g\sin 10^{\circ}$	B1					
	μ	≥ 0.176	B1	[2]	$\mu \geqslant F \div R \text{Allow}$	$\mu \ge \tan 10^{\circ}$		
(ii)	Pl	$E \log = 50g \times d\sin 10^{\circ}$	B1		d = 5 or d = 10			
	W 0.	/D against friction = $19 \times 50 g \cos 10^\circ \times d$	B1		d = 5 or d = 10			
			M1		For using WD by 5 WD against friction	0 N force + I n = KE gain	PE loss –	
	5(5($0 \times 5 + 50 g \times 10 \sin 10^{\circ} - 0.19 \times 0 g \cos 10^{\circ} \times 10 = 0.5 \times 50 v^{2}$	A1					
	Sp	peed is 2.70ms^{-1}	A1	[5]				
					SC for candidates u law: max $2/5$ B1 $v = 2.94 \text{ ms}^{-1}$ af B1 Speed is 2.70 m	using Newtor fter 5 m s ⁻¹	n's Second	
(iii)	50 0.	$0 g \sin 20^{\circ} - 19 \times 50 g \cos 20^{\circ} = 50 a$	M1		For using Newton's	s Second Lav	N	
	A	cceleration is $1.63 \mathrm{ms}^{-2}$	A1	[2]				