Page 4	Mark Scheme	Syllabus	Paper					
	Cambridge International AS/A Level – October/November 2016					42		
1 (i)	$3.5 = 10a \rightarrow a = 0.35 \mathrm{ms}^{-2}$	B1		Allow $a = 3.5/10$				
	$[10\cos 15 - F = 2 \times 0.35]$	M1		For applying Newton's 2nd law to the particle				
	$F = 8.96 \mathrm{N}$ AG	A1	[3]					
Alternative to 1(i)								
	$s = \frac{1}{2}(0+3.5) \times 10 = 17.5 \mathrm{m}$	B1		Distanced moved in 10 secs				
	$[10\cos 15 \times 17.5 = F \times 17.5 + \frac{1}{2} 2 (3.5)^2]$	M1		Work done by 10 N force = WD against F + KE gain				
	$F = 8.96 \mathrm{N}$ AG	A1	[3]					
(ii)	$[R = 2g - 10\sin 15]$	M1		Resolving fo	rces verticall	у		
	$[\mu = 8.96/(2g - 10\sin 15)]$	M1		Using $F = \mu$	R			
	$\mu = 0.515$	A1	[3]					
2 (i)	$[v = 4t - 40t^{0.5}]$	M1*		For different	iating s to fir	ıd v		
	$[a = 4 - 20t^{-0.5}]$	M1*		For different	iating v to fir	nd <i>a</i>		
	$[4 - 20t^{-0.5} = 0]$	DM1		For setting <i>a</i> and attempt	= 0 to solve to f	ind <i>t</i>		
	<i>t</i> = 25 s	A1	[4]					
(ii)	Substitute their t into s or v	M1						
	Displacement= $-2083.3 \text{ m}(= -2080 \text{ 3sf})$ and Velocity = -100 ms^{-1}	A1	[2]	or Displacem	nent = -6250)/3		

Ρ	age 5	Mark Scheme					Paper		
		Cambridge International AS/A Level – October/November 2016					42		
3	(i)	$[X = 60\cos 25 + 50\cos 15]$	M1		For resolving both forces in the direction of river				
		= 103 N	A1	[2]	Value of X is 102.7 N				
	(ii)	$Y = 60\sin 25 - 50\sin 15$ [= 12.4]	B1		Component perpendicular to the direction of the river				
		[R2 = X2 + Y2] or $[\alpha = \arctan(Y/X)]$	M1		For using Py arctan to find its direction	or using Pythagoras or for using etan to find the resultant force or direction			
		Magnitude is 103 N (or $\alpha = 6.9^{\circ}$ with direction specified unambiguously)	A1		Magnitude is	gnitude is 103.4 N			
		$\alpha = 6.9^{\circ}$ with direction specified unambiguously (or Magnitude = 103 N)	B1	[4]					
4	(i)	PE loss = $mg \times 100\sin 20$	B1						
		$[\frac{1}{2}mv^2 - \frac{1}{2}m \times 5^2 = mg \times 100\sin 20]$	M1		Using KE ga	in = PE loss			
		$v = 26.6 \mathrm{ms}^{-1}$	A1	[3]					
	Alternative method for 4(i)								
		$a = g \sin 20 [= 3.42]$	B1						
		$[v^2 = 5^2 + 2 \times a \times 100]$	M1		Using $v^2 = u^2$	$^{2} + 2as$			
		$v = 26.6 \mathrm{ms}^{-1}$	A1	[3]					
	(ii)	KE = $\pm (0.5m \times 441 - 0.5m \times 25) [= \pm 208m]$	B1						
		$[mg \times 100\sin 20 = 8500 + 208m]$	M1		For using PE Friction + K	E loss = WD a E gain	against		
		Mass $m = 63.4$ kg	A1	[3]					

Page 6	Mark Scheme					Paper
	Cambridge International AS/A Level – October/November 2016				9709	42
			1	Γ		
5	$F = \mu mg \cos 30$	B1				
	$[10+F-mg\sin 30=0]$	M1		Resolving up, first case		
	$[75 - F - mg\sin 30 = 0]$	M1		Resolving up, second case		
	[85 = 2mgsin30] or $[10 + \mu mgcos30 - mgsin30 = 0$ $75 - \mu mgcos30 - mgsin30 = 0]$	M1		Either attempt to solve for m or Solve a pair of two 3 term simultaneous equations for either m or μ		
	$m = 8.5 \mathrm{kg} \mathrm{or} \mu = 0.442$	A1				
	$\mu = 0.442 \text{ or } m = 8.5 \text{ kg}$	B1	[6]			
6 (i)	$[Power = 400 \times 25]$	M1		For using $P = F = resistance$	= Fv where ce $= 400$ N	
	Power = 10000 W	A1	[2]	Allow 10kW	7	
(ii)	Tension = 100 N	B1	[1]	Considering the trailer		
(iii)	New driving force = $25000/20 = 1250 \text{ N}$	B1		Driving force = P/v at the instant when $v = 20$		
	[DF - 300 - T - 3000 gsin4 = 3000a] or [T - 100 - 500 gsin4 = 500a] or [DF - 400 - 3500 gsin4 = 3500a]	M1		For using Newton's second law applied either to the van or to the trailer or to the system of van and trailer.		
		M1		For using N2 other cases	applied to o	ne of the
	[a = -0.4547 may be seen]	M1		Solving or us find <i>T</i>	sing substitut	ion to
	$T = 221 \mathrm{N}$	A1	[5]	Allow $T = 15$	550/7N	

Page 7	Mark Scheme				Syllabus	Paper		
	Cambridge International AS/A Level –	I AS/A Level – October/November 2016			9709	42		
7 (i)	$v = 3 \times 10 = 30 \mathrm{ms}^{-1}$	B1		Velocity after 10 seconds				
	$[s = \frac{1}{2}(30 + 40) \times 30]$ or equivalent complete method	M1		For determining distance travelled in first 40 seconds				
	Total distance = 1050 m	A1	[3]					
(ii)	[Distance = 450 m Time taken = $450/15 = 30 \text{ s}$]	M1		For finding distance covered in deceleration stage and time taken for this stage				
	Total time of motion for $car = 70 s$	A1		May be implied by time for motorcycle = 50 s				
	[Motorcycle takes 50 s to travel 1500 m $1500 = \frac{1}{2} (30 + 50) \times V$ or $1500 = 30 V + 0.5 \times 20 V$]	M1		For setting up an equation for distance travelled by M/C (<i>v</i> - <i>t</i> graph or other) involving <i>V</i> or <i>a</i> and up to one other variable.				
	$V = 37.5 \mathrm{ms}^{-1}$	A1						
	[20 s is split between 5 s accelerating and 15 s decelerating]	M1		For finding time taken to accelerate to speed V				
	$a = 37.5/5 = 7.5 \mathrm{ms}^{-2}$	A1	[6]					
(iii)	Displacement-time graph	B1		Two of the the correct with	nree graph sta correct curva	ages iture		
		B1		All three stag with correct	ges of the gra curvature	ph correct		
		B1	[3]	Correct graph t=10,40,70s =	h, fully label = 150,1050,	led 1500		