	Page 4	Mark Scheme Cambridge International A Level – October/November 2016	Syllabus 9709	Paper 31	
1	Use o	e for 3^x and obtain $3^x = \frac{18}{7}$ correct method for solving an equation of the form $3^x = a$, where $a > 0$ in answer $x = 0.860$ 3 d.p. only		B1 M1 A1	[3]
2	State Obta	correct unsimplified first two terms of the expansion of $(1+2x)^{-\frac{3}{2}}$, e.g. $1+(x)^{-\frac{3}{2}}$, e.g. $(-\frac{3}{2})(-\frac{3}{2}-1)(2x)^2/2!$ in sufficient terms of the product of $(2-x)$ and the expansion up to the term is in final answer $2-7x+18x^2$ Do not ISW	2	B1 B1 M1 A1	[4]
3	EITH	<i>IER</i> : Correctly restate the equation in terms of $\sin \theta$ and $\cos \theta$ Correct method to obtain a horizontal equation $\sin \sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $3\sin^2 \theta - \sin^2 \theta$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta = -41.8^{\circ}$ only [Ignore answers outside the given interval.]	$\sin\theta - 2 = 0$	B1 M1 A1 M1 A1	
	<i>OR</i> 1	Square both sides of the equation and use $1 + \tan^2 \theta = \sec^2 \theta$ Correct method to obtain a horizontal equation in $\sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $9\sin^2 \theta - 6\sin^2 \theta$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta = -41.8^\circ$ only	$\sin\theta - 8 = 0$	B1 M1 A1 M1 A1	
	OR 2	: Multiply through by $(\sec\theta + \tan\theta)$ Use $\sec^2\theta - \tan^2\theta = 1$ Obtain $1 = 3 + 3\sin\theta$ Solve for $\sin\theta$ Obtain final answer $\theta = -41.8^\circ$ only		M1 B1 A1 M1 A1	[5]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	31

4 <i>EITHER</i> : <i>EITHER</i> : State $2xy + x^2 \frac{dy}{dx}$, or equivalent, as derivative of x^2y State $6y^2 + 12xy \frac{dy}{dx}$, or equivalent, as derivative of $6xy^2$ <i>OR</i> : Differentiating LHS using correct product rule, state term $xy(1 - equivalent$ dy	$-6\frac{dy}{dx}$, or B1	
OR: Differentiating LHS using correct product rule, state term $xy(1 - equivalent$		
equivalent	$-6\frac{\mathrm{d}y}{\mathrm{d}x}$), or	
equivalent	ax	
dy	B1	
State term $(y + x\frac{dy}{dx})(x - 6y)$, or equivalent	B1	
Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to	o zero M1*	
Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct v	work only) A1	
Explicitly reject $y = 0$ as a possibility $py^2 - qxy = 0$	A1	
Obtain an equation in x or y	DM1	
Obtain answer $(-3a, -a)$	A1	
<i>OR</i> : Rearrange to $y = \frac{9a^3}{x(x-6y)}$ and use correct quotient rule to obtain $-\frac{9a^3}{x^2(x-6y)}$	$(b)^{2} \times B1$	
State term $(x-6y) + x(1-6y')$, or equivalent	B1	
Justify division by $x(x - 6y)$	B1	
Set $\frac{dy}{dx}$ equal to zero	M1*	
Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1	
Obtain an equation in x or y	DM1	
Obtain answer $(-3a, -a)$	A1	[7]
5 (i) <i>EITHER</i> : Use tan 2 <i>A</i> formula to express LHS in terms of $\tan \theta$	M1	
Express as a single fraction in any correct form	A1	
Use Pythagoras or $\cos 2A$ formula	M1	
Obtain the given result correctly	A1	
<i>OR</i> : Express LHS in terms of sin 2θ , cos 2θ , sin θ and cos θ	M1	
Express as a single fraction in any correct form	A1	
Use Pythagoras or $\cos 2A$ formula or $\sin(A - B)$ formula	M1	F 43
Obtain the given result correctly	A1	[4]
(ii) Integrate and obtain a term of the form $a \ln(\cos 2\theta)$ or $b \ln(\cos \theta)$ (or secant equivalents	s) M1 *	-
Obtain integral $-\frac{1}{2}\ln(\cos 2\theta) + \ln(\cos \theta)$, or equivalent	A1	
Substitute limits correctly (expect to see use of <u>both</u> limits)	DM1	
Obtain the given answer following full and correct working	A1	[4]

	Ра	ge 6	Mark Scheme	Syllabus	Paper	
			Cambridge International A Level – October/November 2016	9709	31	
6	(i)		e recognizable sketch of a relevant graph the other relevant graph and justify the given statement		B1 B1	[2]
((ii)	or the	calculations to consider the value of a relevant expression at $x = 1.4$ and $x =$ e values of relevant expressions at $x = 1.4$ and $x = 1.6$ plete the argument correctly with correct calculated values	1.6,	M1 A1	[2]
((iii)	Rear	$x = 2\sin^{-1}\left(\frac{3}{x+3}\right)$ range this in the form $\operatorname{cosec} \frac{1}{2}x = \frac{1}{3}x+1$ orking in reverse, need $\sin \frac{x}{2} = \left(\frac{3}{x+3}\right)$ for first B1		B1 B1	[2]
((iv)	Obtai Show	he iterative formula correctly at least once in final answer 1.471 v sufficient iterations to 5 d.p. to justify 1.471 to 3 d.p., or show there is a sig ge in the interval (1.4705, 1.4715)	gn	M1 A1 A1	[3]
7	(i)	Obtai Equa	he correct product rule in correct derivative in any form, e.g. $(2-2x)e^{\frac{1}{2}x} + \frac{1}{2}(2x-x^2)e^{\frac{1}{2}x}$ te derivative to zero and solve for x in $x = \sqrt{5} - 1$ only		M1 A1 M1 A1	[4]
	(ii)	Obtai Comj Use l	rate by parts and reach $a(2x - x^2)e^{\frac{1}{2}x} + b\int (2 - 2x)e^{\frac{1}{2}x} dx$ in $2e^{\frac{1}{2}x}(2x - x^2) - 2\int (2 - 2x)e^{\frac{1}{2}x} dx$, or equivalent plete the integration correctly, obtaining $(12x - 2x^2 - 24)e^{\frac{1}{2}x}$, or equivalent imits $x = 0$, $x = 2$ correctly having integrated by parts twice in answer 24 - 8e, or exact simplified equivalent		M1* A1 A1 DM1 A1	[5]

	Pa	nge 7		Mark Scheme	Syllabus	Paper]
			Cambridg	je International A Level – October/November 2016	9709	31	
8	(i)	Use c	orrect method	rect normal vector to either plane, e.g. $3\mathbf{i} + \mathbf{j} - \mathbf{k}$ or $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ to calculate their scalar product and planes are perpendicular		B1 M1 A1	[3]
	(ii)	EITH	Obtain s	at a complete strategy for finding a point on <i>l</i> the line of inters such a point, e.g. $(0, 7, 5)$, $(1, 0, 1)$, $(5/4, -7/4, 0)$ 2: State two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for <i>l</i>		M1 A1	_
				e.g. $3a + b - c = 0$ and $a - b + 2c = 0$ Solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 1 : -7 : -4$, or equivalent State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	2	B1 M1 A1 A1√ [№]	
			<i>OR</i> 1:	Obtain a second point on <i>l</i> , e.g. $(1, 0, 1)$ Subtract vectors and obtain a direction vector for <i>l</i> Obtain $-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{k} + \lambda(-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k})$		B1 M1 A1 A1√ [№]	
			OR2:	Attempt to find the vector product of the two normal vector Obtain two correct components of the product Obtain $\mathbf{i} - 7\mathbf{j} - 4\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	DIS	M1 A1 A1 A1	
		OR1:	Obtain a Express Obtain a Form a	one variable in terms of a second variable a correct simplified expression, e.g. $y = 7 - 7x$ the third variable in terms of the second a correct simplified expression, e.g. $z = 5 - 4x$ vector equation for the line a correct equation, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$		M1 A1 M1 A1 M1 A1√	
		OR2:	Obtain a Express Obtain a Form a	one variable in terms of a second variable a correct simplified expression, e.g. $z = 5 - 4x$ the same variable in terms of the third a correct simplified expression e.g. $z = (7 + 4y) / 7$ vector equation for the line a correct equation, e.g. $\mathbf{r} = \frac{5}{4}\mathbf{i} - \frac{7}{4}\mathbf{j} + \lambda(-\frac{1}{4}\mathbf{i} + \frac{7}{4}\mathbf{j} + \mathbf{k})$		M1 A1 M1 A1 M1 A1√ [∧]	[6]

	Ра	ge 8	Mark Scheme	Syllabus	Paper	
			Cambridge International A Level – October/November 2016	9709	31	
9	(a)	EITHER	Use $i^2 = -1$ Obtain one of the answers $w = \frac{1}{2i+1}$ and $w = -\frac{5}{2i+1}$ Multiply numerator and denominator of an answer by $-2i + 1$, or equiv	valent	M1 M1 A1 M1	
		OR1:	Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$ Multiply the equation by $1 - 2i$ Use $i^2 = -1$ Obtain $5w^2 + 4w(1-2i) - (1-2i)^2 = 0$, or equivalent Use quadratic formula or factorise to solve for w Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$		A1 M1 M1 A1 M1 A1	
		OR2:	Substitute $w = x + iy$ and form equations for real and imaginary parts Use $i^2 = -1$ Obtain $(x^2 - y^2) - 4xy + 4x - 1 = 0$ and $2(x^2 - y^2) + 2xy + 4y + 2 = 0$ o.e. Form equation in x only or y only and solve Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$		M1 M1 A1 M1 A1	[5]
	(b)	Show a o Show ha Show ha	circle with centre 1 + i circle with radius 2 alf-line arg $z = \frac{1}{4}\pi$ alf-line arg $z = -\frac{1}{4}\pi$ he correct region		B1 B1 B1 B1 B1 B1	[5]

	Pa	ge 9	Mark Scheme	Syllabus	Paper	
		C	ambridge International A Level – October/November 2016	9709	31	
10	(i)	Integrate a	ariables correctly and integrate at least one side nd obtain term <i>kt</i> , or equivalent a relevant method to obtain <i>A</i> and <i>B</i> such that $\frac{1}{x(4-x)} = \frac{A}{x} + \frac{B}{4-x}$, or	equivalent	M1 A1 M1*	
		Obtain A	$=B=\frac{1}{4}$, or equivalent		A1	
		Integrate a	nd obtain terms $\frac{1}{4}\ln x - \frac{1}{4}\ln(4-x)$, or equivalent		A1 √ [^]	
		EITHER:	Use a pair of limits in an expression containing $p\ln x$, $q\ln(4-x)$ and rt and evaluate a constant Obtain correct answer in any form, e.g. $\ln x - \ln(4-x) = 4kt - \ln 9$,		DM1	
			or $\ln\left(\frac{x}{4-x}\right) = 4kt - 8k$		A1	
			Use a second pair of limits and determine k Obtain the given exact answer correctly		DM1 A1	
		OR:	Use both pairs of limits in a definite integral Obtain the given exact answer correctly Substitute k and either pair of limits in an expression containing $p \ln x$, $q \ln(4 - x)$ and rt and evaluate a constant		M1* A1 DM1	
			Obtain $\ln \frac{x}{4-x} = t \ln 3 - \ln 9$ or equivalent		A1	[9]
	(ii)	Substitute Obtain ans	x = 3.6 and solve for $tswer t = 4$		M1 A1	[2]