Page	e 4 Mark Sche	9709_w Syllabus	<u>14 ms 41</u> Paper			
I ug	Cambridge International AS/A Leve		tober/N	November 2014	9709	41
1		M1		For using Newto terms	n's 2 nd law w	ith three
	$DF - R = 800 \times 1.2$	A1				
	DF = 22500/18 [= 1250]	B1				
	Resistance is 290 N	A1	4			
2		M1		For a triangle of forces with sides 18, R and W for A or for B – or –		
				for resolving for parallel to line of	ces acting on	
	For A: right angle between 18 and R and 30° opposite 18or $W_A \sin 30^\circ = 18$ orFor B: right angle between 18 and W and 30° opposite 18or $W_B \sin 30^\circ = 18 \cos 30^\circ$	A1				
	For B: right angle between 18 and W and 30° opposite 18or $W_B \sin 30^\circ = 18 \cos 30^\circ$ orFor A: right angle between 18 and R and 30° opposite 18or $W_A \sin 30^\circ = 18$	B1				
	Weight of A is 36 N and weight of B is 31.2 N	A1	4			
3 (i)		M1		For resolving for three terms	ces parallel t	o slope with
	$F + W \sin \alpha = 7.2$	A1				
	$[\mu \times 7.5 \cos \alpha \ge 7.2 - 7.5 \sin \alpha]$	M1		For using $F \leq \mu I$	R	
	$\mu \ge 17/24$	A1	4	AG		
(ii)	$[7.2 + 7.5 \times (7/25) - \mu(7.5 \times 24/25) > 0]$	M1		For using 'result is > 0 ' and $F = \mu$		n the plane
	$\mu < 31/24$	A1	2	AG		
4 (i)	End speed = $1.3 + 0.1 \times 20$	B1				
	$v_{Q}(t) = 0.008t^{2} + v_{Q}(0)$	B1				
	$[3.3 = 0.008 \times 20^2 + v_{\mathcal{O}}(0)]$	M1		For substituting e	end speed and	t = 20
	Speed of Q when $t = 0$ is 0.1 ms ⁻¹	A1	4			

							<u>14 ms 41</u>
F	Page			ah av/N	lovember 2011	Syllabus	Paper
		Cambridge International AS/A Leve	ei – Oci		lovember 2014	9709	41
	(ii)	Distance $AO = (3.3^2 - 1.3^2) \div (2 \times 0.1)$ or $20 \times \frac{1}{2} (1.3 + 3.3) [= 46]$	B1		or $AO = 1.3(20)$ -	$+\frac{1}{2}(0.1) \times 20$) ²
		Distance $OB = 0.008 \times 20^3 \div 3 + 0.1 \times 20$ [= 70/3 = 23.3]	B1				
		Distance AB is 69.3 m	B1	3			
5	(i)		M1		For resolving forces horizontally on B , including the frictional force and using tensions in PB and BQ being equal to the weights of P and Q respectively.		
		Frictional force = $\mu \times 0.25g$	B1				
		$0.3g = 0.2g + \mu 0.25g \Rightarrow$ Coefficient of friction is 0.4	A1	3			
	(ii)		M1		For applying New to <i>B</i>	wton's 2 nd lav	v to P or
		0.2g - T = 0.2a or $T - 0.4 \times 0.25g = 0.25a$ $T - 0.4 \times 0.25g = 0.25a$ or	A1				
		0.2g - T = 0.2a or $0.2g - \mu 0.25g = (0.2 + 0.25)a$	B1				
			M1		For solving for <i>a</i>	and for T	
		Acceleration is 2.22 ms^{-2}	B1				
		Tension is 1.56 N	A1	6			
6	(i)	$[3g - R = 3 \times 5.5]$	M1		For using Newton	n's 2 nd law	
		Resistance is 13.5 N	A1	2			
	(ii)	Graph consists of two line segments; the first starts at the origin and has a positive gradient.	B1				
		The second starts where first one ends and has positive but less steep gradient.	B1	2			

						<u>14_ms_4</u> 1
Page	6 Mark Sche Cambridge International AS/A Leve	lovember 2014	Syllabus 9709	Paper 41		
			obei/i		9709	41
(iii)	$\begin{bmatrix} v_S^2 = 2 \times 10 \times 5 = 100 \text{ or} \\ v_B^2 = v_T^2 + 2 \times 5.5 \times 4 \end{bmatrix}$	M1		For using $v^2 = u^2$	+ 2as (for ei	ther stage)
	$v_S = 10 \text{ ms}^{-1}$ at surface and $v_B = 12 \text{ ms}^{-1}$ at bottom - both shown on sketch $[10 = 0 + 10t_1 \text{ or}$ $12 = 10 + 5.5(t_2 - t_1)]$	A1 M1		For using $v = u + $	at (for eithe	r stage)
	$t_1 = 1$ s at surface and shown on sketch	A1				
	$t_2 = 1.36$ s at bottom and shown on sketch.	A1	5			
7		M1		To obtain PE char	nge or KE ch	lange
	PE change = $60g \times 17.5$ or KE change = $\frac{1}{2} 60(8.5^2 - 3.5^2)$	A1		[PE = 10500]		
	KE change = $\frac{1}{2} 60(8.5^2 - 3.5^2)$ or PE change = $60g \times 17.5$	B1		[KE = 1800]		
	WD against resistance = 6×250	B1		[= 1500]		
	WD by pulling force = $50\cos\alpha \times 250$	B1				
		M1		For using 'WD by linear combinatio change and WD a	n of PE chan	ge, KE
	WD = 10500 - 1800 + 1500	A1√				
	WD by the pulling force is 10200 J or 10.2 kJ	A1				
	For using WD = $Fd\cos\alpha$	M1				
	$10200 = 50 \times 250 \cos \alpha$	A1				
	$\alpha = 35.3$	A1	11			

		9709 w	v14 ms 41
Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	41

Alternative solution						
	M1		Using $v^2 = u^2 + 2as$			
$(3.5)^2 = (8.5)^2 + 2a(250)$	A1					
a = -3/25 = -0.12	A1					
	M2		Applying Newton's 2 nd law with 4 relevant terms [Allow M1 with 3 relevant terms]			
$50 \cos \alpha - 6 - 60g(17.5/250) = 60(-0.12)$	A4		One mark for each correct term			
$[\cos \alpha = 102/125]$	M1		Solve for $\cos \alpha$			
<i>α</i> = 35.3	A1	11				