Page 4		Mark		9709 Syllabus	<u>w13_ms_7</u> Paper			
. uge т		GCE A LEVEL – October/November 2013				9709	73	
1	$Est(\mu) =$ $Est(\sigma^2) =$ $= 6.8131$	B1 Accept 751/400 (not 150.2/80) M1 Correct subt'n in correct formula 1/79 (820.24 - 150.2 ² /80) A1 Image: Correct subt'n in correct formula 1/79 (820.24 - 150.2 ² /80)						
		$\frac{1}{2} \pm z \times \sqrt{\frac{6.81316''}{80}}$ o 2.45 (3 sf)	B1 M1 A1	6	Seen Must be an inte NB use of bias	erval. ed var can still sco	ore A1.	
Total				[6]				
2 (i)	sd = 10.4 H ₀ : Pop	sd unchanged or 4 mean speed (or μ) = 62.3 mean speed (or μ) < 62.3	B1 B1		Oe e.g. var unchanged Both. Not just "Mean "			
	$\frac{59.9-6}{10.4}$		M1		Accept sd/var mixes, but must have $\sqrt{75}$			
	Compar	9 or -2.00 (allow + or -) e - 2.054 or -2.055 ence that mean speed	A1 M1 A1 ft	6	Correct z value (or correct critical value) Valid comparison of z 's/areas/critical values No contradictions. Do not ft 2-tail test.			
(ii)	Pop dist Yes	ribution unknown	B1 B1	2				
Total				[8]				
	2500	$\int_{0}^{1} (100t^{3} - t^{5}) dt$	M1		Attempt integ	$t^2 f(t)$		
	". <u>100</u> ",	$\begin{bmatrix} 25t^4 - \frac{t^6}{6} \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix} = \frac{100}{3} $ ($\frac{16}{3}$) ² (4.89 (3 sf)	M1 A1	3	For E (T ²) – ((E(T)) ²		
(ii)	$\int_{n}^{10} \frac{1}{2500}$	$\int (100t-t^3) \mathrm{d}t$	M1		Attempt integ	f(t), ignore limits		
		$0t^2 - \frac{t_4}{4} = 0.1$	M1			f(<i>t</i>), limits <i>n</i> to 10 or 0.9. Not need to		
	$\left \frac{1}{2500} \right 2$	$500 - \left(50n^2 - \frac{n^4}{4}\right) = 0.1$	M1		0.1/0.9 matche	ed to correct limits	and used	
	L	$n^2 + 9000 = 0$ 3772, $n = 8.27$	M1		Correct metho	d of solution of a (QE in n ²	
	n = 8		A1	5	Must be single	ans only		
	1			1	1			

				<u>9709_w13_ms_73</u>						
	Page 5		Mark	Syllabus	Paper					
			GCE A LEVEL – O	9709	73					
4	(i) (a)	$e^{-2.1} \times \frac{2}{2}$ = 0.189	$\frac{2.1^3}{3!}$ alone M1 89 A1			Allow any λ . Allow sum of 3 or 4 rel produe.g. P (3, 0)				
		$e^{-1.2} \times \frac{1.2}{2}$	M1		P (Fem = 3) × P (Opp = 0) or P (Fem = 2) × P (Opp = 1)					
		$+ e^{-1.2} \times$	$\frac{1.2^2}{2!} \times e^{-0.9} \times 0.9$	M1		P(3,0)+P(2,1)			
		= 0.115		A1	3	As final answe	er			
	(ii)	N (30, 3) $\frac{34.5-30}{\sqrt{30}}$	B1 M1		seen or implied standardising with their N (λ , λ)					
		$\sqrt{30}$ 1 - Φ ("(= 0.206)).822")	M1 A1	4		o or incorrect cc or no $$ at with their working			
To	otal									
5	(i)	$E (X)=3 (12+22+"3.5"2(=\frac{35}{12} A$	$+3^2+4^2+5^2+6^2)\div 6-$	B1 B1	2	21/6 oe, must see co working	orrect expression a	nd no incorrect		
	(ii)	Attempt N (3.5, -	$P(X < 3) \text{ or } 1 - P(X \ge 3)$ $\frac{35}{2}/50)$	M1 M1		seen or implied seen or implied				
		$\frac{3-"3.5"}{\sqrt{\frac{35}{12}}/50}$	= (= -2.070)	M1		or $\frac{2.99 - "3.5"}{\sqrt{\frac{35}{12}/50}}$	(=-2.111)			
			$70") = 1 - \Phi(2.070")$	M1		Φ ('-2.111') = = 0.0174 or 0	$1 - \Phi$ ('2.111') .0173			
		as final a	nswer	A1	5	Consistent area As final answe or valid total n Allow with inc have ÷50	er) OR no √.Must		
	(iii)	Die is bi numbers	ased (towards lower)	B1 indep		Comment impl	lying die is biased			
		3) or Equal scores	50 throws \geq 3 (Allow > nos of high and low high scores	B1 indep	2	indicate bias	lying results of exp as towards higher 1 n context	-		
To	otal				[9]					

9709 w13 ms 7									
Pa	ge 6	Mark Scheme			Syllabus	Paper			
		GCE A LEVEL – October/November 2013			9709	73			
6 (i) (ii)	$ \begin{array}{c} 10125) \\ \underline{5200} \\$	5×45^{2}) or N(5100, $\frac{100''}{25''}$ (= 0.994) 24'') (3 sf) L - 3L or similar L) = -260 $-3L) = 52^{2} + 9 \times 45^{2}$ or $\frac{60''}{9''}$ (= 1.797)	B1 M1 M1 A1 B1 B1 M1 M1 A1		d with their new me t with their workin 20 with 45 ² and 52 ²	JS Paper 73 w mean and new var vorking with normal d 52 ² combined ly be φ			
						ese values M1, M	·		
Total				[10]					