9709 w13 ms 72

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	72

	,		
$1 \qquad \lambda = \frac{1}{30}$	B1		o.e
$1 - e^{-\frac{1}{30}}$ = 0.0328 (3 s.f.)	M1 M1 A1		$1 - P(X = 0)$ by Poisson, any λ allow 1 end error $1 - P(X = 0)$ by Poisson, correct λ no end errors
	Ai	[4]	S.R. Binomial with final answer 0.0328 B2 Correct answer, no working scores B2
z = 2.576	B1		Seen (accept 2.574 to 2.579)
$2 \times z \times \frac{0.17}{\sqrt{n}} = 0.2 \text{ oe}$	M1		Allow without '2 ×' OR with incorrect z
$n = \left(\frac{2 \times 0.17 \times 2.576}{0.2}\right)^2$ oe (= 19.2)	M1		Attempt to arrange equ of correct form (with
Smallest <i>n</i> is 20	A1	[4]	correct z and '2×' into the form n= or \sqrt{n} =
3 (i) est (μ) = 2866 or 2870 (3 s.f.)	B1		Accept 143300/50 o.e.
est $(\sigma^2) = \frac{1}{49} (410900000 - \frac{143300^2}{50})$	M1		Correct subst in correct formula
(= 4126.53)			
= 4130 (3 sf)	A1	[3]	
(ii) H_0 : Pop mean (or μ) = 2850 H_1 : Pop mean (or μ) \neq 2850	В1		Both. Not just 'mean'
$ \frac{143300}{50} -2850 \\ $	M1		Allow '4126.53' without $\sqrt{}$, but must have all $\sqrt{50}$
= 1.761 '1.761' < 1.96 No evidence mean distance changed	A1 M1 A1f	[5]	Or correct c.v. (2867.81) for alt method For valid comparison of z values, areas or c.v. Dep 1.96; ft their 1.761 If H_1 : $\mu > 2850$ and c.f. 1.645, max B0M1A1M1A0 (c.v. for 1 tail test 2864.94)
4 (i) $\lambda = 2.8$	B1		seen
$e^{-2.8}(1+2.8+\frac{2.8^2}{2})$	M1		any λ allow one end error
= 0.469 (3 s.f.) or 0.47(0)	A1	[3]	As final answer
(ii) $e^{-0.7n} \ge 0.99$ or $e^{-\lambda} \ge 0.99$ $-0.7n \ge \ln 0.99$ or $-\lambda \ge \ln 0.99$ $n \le 0.01436$ or $\lambda \le 0.01005$	M1 M1 A1	, , , , , , , , , , , , , , , , , , , ,	Allow '=' throughout Attempt In both sides Can be implied. Accept 3 s.f.
'0.01436' × 150 or '0.01005' × 150 ÷ 0.7 Max period is 2.15 mins (3 sf)	M1 A1	[5]	Note $e^{-(0.7/150)n} \ge 0.99$ scores 1 st and 3 rd M1 T & I leading to ans 2.2 mins, SC: B2

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013		72

5 (i)	$\int_{1}^{2} k(x-2)^2 dx = 1$	M1		Attempt to integrate $f(x)$ with correct limits
3 (1)	$\int_{0}^{\infty} k(x-2)^2 dx = 1$	IVII		and = 1
	$\left(\left\lceil \frac{k(x-2)^3}{3} \right\rceil_0^2 = 1\right)$			
	$k\left[0 - \left(-\frac{8}{3}\right)\right] = 1$	A1		Must see this line or better, e.g. $k \times \frac{8}{3} = 1$
	$k = \frac{3}{8} \mathbf{AG}$		[2]	
(ii)	$\frac{3}{8} \int_{d}^{2} (x-2)^{2} dx = 0.2$ $(\frac{3}{8} \left[\frac{(x-2)^{3}}{3} \right]_{d}^{2} = 0.2)$	M1		$\int f(x)dx$ with limits d and 2 or 0 and d, and = 0.2 or =0.8 Condone missing 'k'
	$\frac{3}{8} \left[0 - \frac{(d-2)^3}{3} \right] = 0.2 \text{ oe}$ $((d-2)^3 = -1.6)$ $d = 0.83(0) (3 \text{ s.f.})$	M1	[3]	Reasonable attempt to integrate from a correct expression, with limits substituted to give expression in d³. Condone missing 'k'
(iii)	$\frac{3}{8} \int_{0}^{2} x(x-2)^{2} dx$ $(= \frac{3}{8} \int_{0}^{2} x^{3} - 4x^{2} + 4x dx)$	M1		Attempt integ $xf(x)$; ignore limits, condone missing k $\left(\frac{3}{8} \left[x \times \frac{(x-2)^3}{3} - \int \frac{(x-2)^3}{3} dx \right]_0^2 \right)$
	$= \frac{3}{8} \left[\frac{x^4}{4} - \frac{4x^3}{3} + 2x^2 \right]_0^2$ $= \frac{1}{2}$	A1	[3]	$= \frac{3}{8} \left[x \times \frac{(x-2)^3}{3} - \frac{(x-2)^4}{12} \right]_0^2$ Correct integration & limits, condone missing k
6 (i)	P(Type I) = 1 - P(\geq 4 assuming $p = 0.7$) 1-($^{6}C_{4} \times 0.7^{4} \times 0.3^{2} + ^{6}C_{5} \times 0.7^{5} \times 0.3$ + 0.7 6) (= 1 - 0.744) = 0.256 (3 s.f.)	M1 M1 A1	[3]	or $P(\le 3 \text{ assuming } p = 0.7)$ May be implied ${}^6C_3 \times 0.7^3 \times 0.3^3 + {}^6C_2 \times 0.7^2 \times 0.3^4 + {}^6C_1 \times 0.7 \times 0.3^5 + 0.3^6$ Allow one end error $= 0.256 \text{ (3 s.f.)}$ SR if zero scored allow B1 for use of B(6, 0.7) in any two or more terms
(ii)	P(Type II) = P(≥ 4 assuming $p = 0.35$) = ${}^{6}C_{4} \times 0.35^{4} \times 0.65^{2} + {}^{6}C_{5} \times 0.35^{5} \times 0.65 + 0.35^{6}$ = 0.117	M1 M1 A1	[3]	May be implied Allow one end error SR if zero scored allow B1 for use of B(6, 0.35) in any two or more terms
(iii)	Type 1 They will reject Luigi's belief, although it might be true.	B1 B1	[2]	In context

9709 w13 ms 72

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	72

7 (i)	N(10.61, 0.1017) $\frac{11-10.61'}{\sqrt{0.1017'}} (= 1.223)$ $\Phi('1.223')$ = 0.889 (3 s.f.)	B1 M1 M1 A1 [4]	o.e. Stated or implied (accept in un-simplified form) Allow without √ For attempt to find correct area consistent with their working
(ii)	$P(K-1.2A > 0)$ $Var = 0.0576 + 1.2^{2} \times 0.0441$ $(= 0.121104)$ $N(-0.324, 0.121104)$ $\frac{0-(-0.324)}{\sqrt{0.121104'}} (= 0.931)$ $1 - \Phi('0.931')$ $= 0.176 (3 s.f.)$	M1 B1 B1 M1 M1 A1 [6]	Or similar stated or implied o.e. May be implied (accept in un-simplified form) Allow without √ For attempt to find correct area consistent with their working