				9709	9709 w13 ms 43			
Pa		ge 4	Mark Scheme	Syllabus	Paper			
			GCE A LEVEL – October/November 2013			9709	43	
1	(i)	$[-(1 \div 3)(W\cos\alpha) - W\sin\alpha = (W/g)a]$		M1		For using Newton's 2^{nd} law and $F = \mu R$		
		(-0.32 - 0.28)g = a						
		a = -6.			3	AG		
	(ii)	$\begin{bmatrix} 0 = 5.4^2 + 2(-6)s \end{bmatrix} \text{ or } \\ [mgs(0.28) = \frac{1}{2} m(5.4)^2 - mgs(0.96)/3] \end{bmatrix}$				For using $0 = u^2 + 2as$ or for using PE gain = KE loss – WD against friction		
		Distance is 2.43 m			2			
2		a = 5		M1 A1		For using $a = (M - m)g/(M+m)$ or for applying Newton's 2^{nd} law to A and to B and solving for a.		
		When B reaches the floor $v^2 = 2 \times 5 \times 1.6$; speed is 4ms ⁻¹		B1ft M1		ft a $a\neq g$ $v = \sqrt{3.2}$ For using $0 = u^2 - 2$ for using PE gain =	2a) 2gs or KE loss	
		0 = 16 - 20s (s = 0.8)		A1ft		ft speed		
		$h + 1.6 + 0.8 = 3 \implies h = 0.6$		B1	6			
3		$T_A(1/2.6) + T_B(1/1.25) = 10.5$ $T_A(2.4/2.6) = T_B(0.75/1.25)$		M1		For resolving forces	s on P vertically	
				A1				
				M1		For resolving forces horizontally	s on P	
				A1 M1		For solving for T_A a	and T _B	
		Tension in AP is 6.5 N and tension in BP is 10 N.			6			

						<u>9709_w13_ms_4</u> 3			
P	age 5	Mark Scheme	Syllabus	Paper					
		GCE A LEVEL – October/Nove	9709	43					
	First Alternative								
		M1		For finding two angles in the triangle of forces					
	75.7(5)° c 36.8(7)° c 67.3(8)° c	A1							
		M1		For using the sine equations for T_A and	rule to find nd T_B				
	$\begin{array}{c} T_{\rm A} \div \sin 3 \\ T_{\rm B} \div \sin 6 \end{array}$	6.8(7) = 10.5 ÷ sin75.7(5) and 7.3(8) = 10.5 ÷ sin75.7(5)	A1						
			M1		For solving for T_A	and T_B			
	Tension i	n AP is 6.5 N and tension in BP is 10 N.	A1	6					
	Second A			lternative					
			M1		For finding angles diagram.	at P in the space			
	104.2(5)° 143.1(3)° 112.6(2)°	opposite to 10.5 N opposite to T_A opposite to T_B	A1		For using Lami's r	ule to find			
			M1		equations for T_A as	nd T _B			
	$\begin{array}{l} T_{\rm A} \div \sin 1 \\ T_{\rm B} \div \sin 1 \end{array}$	43.1(3) = 10.5 ÷ sin104.2(5)& 12.6(2) = 10.5 ÷ sin104.2(5)	A1						
			M1		For solving for T_A	and $T_{\rm B}$			
	Tension i	n AP is 6.5 N and tension in BP is 10 N.	A1	6					
4 (i)	[Wsina +	F = 40]	M1		For resolving force plane	es parallel to the			
	F = 40 - 2	300×0.1 (= 10)	A1						
	R = 300 v	$(1-0.1^2)$ (= 298.496)	B1						
			M1		For using $\mu = F/R$				
	Coefficie	nt is 0.0335	A1	5					

				9709	<u>9709_w13_ms_4</u> 3			
Pa		ge 6 Mark Scheme			Syllabus	Paper		
		GCE A LEVEL – October/November 2013			9709	43		
	(ii)	[The com the friction	ponent of weight (30 N) is greater than nal force (10 N)]	M1		For comparing the v component parallel the frictional force of Newton's Second L the acceleration	veight to the plane and or for using aw and finding	
		Box does not remain in equilibrium		A1	2			
5	(i)			D1		The sketch requires line segments with - ve slopes in order, v with a segment of the transgium	The sketch requires three straight line segments with +ve, zero and – ve slopes in order, which together with a segment of the t axis form a trapezium	
				M1		For using $v = at$ for T_1 or $u = -at$ for T_3		
		$T_1 = V \div$	$0.3, T_3 = V$	Al	3			
	(ii)	$[S = \frac{1}{2} T_1]$	$V + T_2 V + \frac{1}{2} T_3 V$]	M1		For using the area p distance travelled	roperty for the	
				M1		For substituting for terms of V	T_1 , T_2 and T_3 in	
		S = 552V	$ - V \{0.5(T_1 + T_3)\} \\ = 552V - 13V^2/6 $	A1				
		$13V^2 - 33$	312V + 72000=0	B1		AG		
		V = 24		B1	5			
6	(i)	[144000/	v - 4800 = 12500a]	M1		For using $DF = P/v$ and Newton's 2^{nd} law at A or at B		
		Accelerat	ion at A is 0.336 ms^{-2}	A1				
		The speed	1 at B 24 ms ^{-1}	A1	3	AG		
	(ii)	WD by D	$\mathbf{F} = 5800 \times 500 \ \&$					
		WD agaii	nst res'ce = 4800×500	B1				
		Loss in K	$E = \frac{1}{2}12500(24^2 - 16^2)$	B1				
				M1		For using WD by DF = PE gain KE loss + WD against res'ce		
		5800x500 ½12500($0 = 12500 \text{gh} - 24^2 - 16^2) + 4800 \times 500$	A1				
	Height of		C is 20 m	A1	5			

			<u>9709 w13 ms 43</u>				
Pa	ige 7	e 7 Mark Scheme				Paper	
		GCE A LEVEL – October/November 2013				43	
	(ii) Alter	rnative					
	$[16^2 = 24^2 + 2 \times 500a]$				For using $v^2 = u^2 + 2as$		
	a = - 0.32	ms ⁻²	A1				
			M1		For using Newton's second law		
	5800-480	$00 - 12500g \times (h \div 500) = 12500(-0.32)$	A1				
	Height of C is 20 m		A1	5			
7 (i)	$[s=k_1t^2/2 -$	$-0.005t^{3}/3+(C)]$	M1		For using $s = \int v dt$		
	$[k_1(60^2/2)]$	$-0.005(60^3/3) = 540$]	DM1		For using limits 0 a equating to 540	nd 60 and	
	$k_1 = 0.5$		A1				
	0.5 × 60 -	$-0.005 \times 60^2 = k_2 \div \sqrt{60}$	M1		For using $v_1(60) = v_1(60)$	v ₂ (60)	
	$k_2 = 12\sqrt{60}$		A1	5	AG		
(ii)			M1		For using $s = 540 + 12\sqrt{60}$	$\int_{60}^{t} (t^{-1/2}) dt$	
	[s = 540 +	$-12\sqrt{60}(2\sqrt{t}-2\sqrt{60}) =]$ 24 $\sqrt{(60t)}-900$	A1	2	Accept any other co if it is used in (iii)	prrect form for s	
(iii)	[24√(60t)	-900 = 1260]	M1		For solving $s(t) = 1$	260 for t	
	t = 135		A1				
	$v = 12\sqrt{60} \div \sqrt{135}$ speed is 8 ms ⁻¹		B1	3			