			9709	<u>9709_w12_ms_43</u>		
	Page 4	Mark Scheme	Syllabus	Paper		
		GCE AS LEVEL – October/November 20		2012	9709	43
r						
1	(i)	PE loss = $0.8g \times (2.5 - 1.8)$ (= 5.6J)	B1			
		Work done is 5.6 J	B1	2		
	(ii)		M1		For using KE gain = PE loss – WD agains	st resistance
		$\frac{1}{2} 0.8v^2 = 0.8g \times 2.5 - 0.6 \times 5.6$	Alft			
		Speed at <i>B</i> is 6.45 ms ^{-1}	A1	3		
2	(i)	[a = 0.2 + 0.012t]	M1		For differentiating to find a	
		$[0.2 + 0.012t = 2.5 \times 0.2]]$	M1		For attempting to sol $a(t) = 2.5a(0)$	ve
		<i>t</i> = 25	A1	3	AG	
	(ii)	$[s = 0.1t^2 + 0.002t^3 \ (+C)]$	M1		For integrating to find $s(t)$	
		$[s = 0.1 \times 625 + 0.002 \times 15625]$	For using limits 0 to 25 or evaluating $s(t)$ with $C = 0$ (v DM1 may be implied by its absen		25 or C = 0 (which s absence)	
		Displacement is 93.75 (accept 93.7 or 93.8)	A1	3		
3	(i)	$[0=8^2-2gs]$	M1		For using $0 = u^2 - 2gs$	
		Maximum height is 3.2 m	A1			
		$[v^2 = 8^2 - 2g \times 1.6]$	M1		For using $v^2 = u^2 - 2$	gs
		Speed is 5.66 ms^{-1}	A1	4		
	(ii)	[5.65685 = 8 - 10t]	M1		For using $v = u - gt$	
		Time is 0.234 s	A1	2		
4	$[T_1 \sin APN = T_2 \sin BPN]$		M1		For resolving forces	horizontally
	$(12 \div 13)T_1 = (15 \div 25)T_2$ or $T_1 \sin 67.4^\circ = T_2 \sin 36.9^\circ$		A1		AEF	
	$[T_1 cos APN + T_2 cos BPN = 21]$		M1		For resolving forces	vertically
	$(5 \div 13)T_1 + (20 \div 25)T_2 = 21$ or T ₁ cos67.4° + T ₂ cos36.9° = 21		A1		AEF	
			M1		For solving for T_1 are	d T ₂
	Tensio	n in S_1 is 13 N, tension in S_2 is 20 N	A1	6		

					970	9_WIZ_MS_43
	Page 5	Mark Scheme		Syllabus Paper		
		GCE AS LEVEL – October/November 2012				43
	Alternativ	e solution using Lami's Theorem				
4	[T ₁ /sin(180	M1		For using Lami's Theorem to form an equation in T_1		
	T ₁ /sin (180 21/sin(cos ⁻	$= \cos^{-1}(20/25)) =$ = (20/25) + cos ⁻¹ (20/52))				
	$T_1/sin(180)$	A1		AEF		
	[T ₂ /sin(180	M1		For using Lami's Theorem to form an equation in T_2		
	$T_2/sin(180)$ 21/sin(cos ⁻	$-\cos^{-1}(20/52)) =$ $^{1}(20/25) + \cos^{-1}(20/52))$				
	or $T_2/sin(180-67.4)=21/sin(36.9+67.4)$		A1		AEF	
			M1		For solving for T_1 a	nd T ₂
	Tension in	S_1 is 13 N, tension in S_2 is 20 N	A1	6		
	Alternativ	e solution using Sine Rule				
4	[T ₁ /sin <i>BPN</i>	$V = 21/\sin(180 - (APN + BPN))]$	M1		For using the Sine Rule on a triangle of forces to form an equation in T_1	
	$T_1/(15/25)$	$= 21/\sin(\cos^{-1}(20/25) + \cos^{-1}(20/52))$				
	$T_1/sin 36.9^{\circ}$	$P = 21/\sin(180 - (36.9 + 67.4))$	A1		AEF	
	$[T_2/sinAPN = 21/sin(180 - (APN + BPN))]$		M1		For using the Sine I equation in T_2	Rule to form an
	$T_2/(12/13)$	$= 21/\sin(\cos^{-1}(20/25) + \cos^{-1}(20/52))$				
	$T_2/sin67.4^\circ$	$= 21/\sin(180 - (36.9 + 67.4))$	A1		AEF	
			M1		For solving for T_1 a	nd T ₂
	Tension in	S_1 is 13 N, tension in S_2 is 20 N	A1	6		

						<u>9709_w12_ms_4</u> 3		
	Page 6	Ma	rk Scheme		Syllabus	Paper		
		GCE AS LEVEL –	October/November	r 2012	9709	43		
5	(i) [$\frac{1}{2} 12(7^2 - 3^2)$]	M1	2	For using $KE = \frac{1}{2} n$	$n(v_{\rm B}^2 - v_{\rm A}^2)$		
	(ii)		M1		For using $mgh = Kl$	E gain		
	1	$2g \times AB\sin 10^\circ = 240$	A1ft					
	Ľ	Distance is 11.5 m	A1	3				
					SR for candidates who avoid 'hence' (max 2/3) For using Newton's Second Law and $v^2 = u^2 + 2as$ [12gsin 10°=12a $7^2 = 3^2 + 2(gsin10^\circ \times AB)$] M1 11.5 m A1			
	(iii)				For using $F(AB)$ cos or for using Newton	$10^{\circ} = PE$ gain n's 2^{nd} law with		
			MI		a = 0.			
	F F	$x 11.5\cos 10^\circ = 240$ or $\cos 10^\circ - 12g\sin 10^\circ = 0$	Alft					
	Ν	lagnitude is 21.2 N	A1	3				
6	$[P = \pm F +$	- 0.6gsin25°]	M1		For resolving forces of <i>P</i>	s in the direction		
	$P_{\text{max}} = F +$ when the p	$P_{\text{max}} = F + 0.6g \sin 25^{\circ}$ or $P = F + 0.6g \sin 25^{\circ}$ when the particle is about to slide upwards' $P_{\text{min}} = -F + 0.6g \sin 25^{\circ}$ or $P = -F + 0.6g \sin 25^{\circ}$ when the particle is about to slide downwards' $R = 0.6g \cos 25^{\circ}$						
	$P_{\min} = -F$ P = -F + to slide do							
	R = 0.6gcc							
	[F = 0.36]	$\times 0.6g cos 25^{\circ}]$	M1		For using $F = \mu R$			
	$[P_{\max} = 0.3]$ P_{r} $P_{\max} = 4.4$	$36 \times 0.6g\cos 25^{\circ} + 0.6g\sin 23^{\circ}$ $_{min} = -0.36 \times 0.6g\cos 25^{\circ} + 9$, $P_{min} = 0.578$ (accept 0.5)	5°, 0.6gsin25°] DM1 8) A1		For substituting for values of P_{max} and P_{max}	F to obtain P _{min} M mark		
			M1		For identifying rang equilibrium AEF; Accept 0.58 i	ge of value for nstead of 0.578		
	Set of valu	ues is $\{P; 0.578 \le P \le 4.4\}$	49} A1	9	and accept < instead	d of \leq		

					9709	9 w12 ms 43
	Page 7	Mark Scheme	rk Scheme			Paper
		GCE AS LEVEL – October/November 2012			9709	43
7	(i)		M1		For applying Newto	on's 2^{nd} law to A
			1411		01 to D.	
		0.32g - T = 0.32a (or $T = 0.48a$)	A1			
		T = 0.48a (or $0.32a - T = 0.32a$) OR				
		0.32g = (0.32 + 0.48)a	B1			
			M1		For solving for <i>a</i> an	d T
		Acceleration is 4 ms ^{-2} and tension is 1.92 N	A1	5		
	(ii)	$[0.98 = \frac{1}{2} 4t^2]$	M1		For using $s = \frac{1}{2} at^2$	
		Time taken is 0.7 s	A1	2		
	(iii)		M1		For using $v = at$ for = d/v for slack stage	taut stage and <i>t</i>
		$v = 4 \times 0.7$ and $t = (1.4 - 0.98)/v$ (= 0.15)	A1ft		ft a from (i) and /or $a\neq g$)	<i>t</i> from (ii) (a>0,
	Time taken is 0.85 s		A1	3		