		970	9 w11 ms 42	2
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2011	9709	42	

1	(i)	F = 720/12	B1		
		$[F - R = 75 \times 0.16]$	M1		For use of Newton's second law
		R = 48	A1	3	
	(ii)	[720/v > 48]	M1		For using $P/v - R = ma$ and $a > 0 \rightarrow P/v > R$
		v < 15 i.e. speed is less than 15 ms ⁻¹	A1	2	
2	(i)	$F = 0.2 \times 6g \cos 8$	B1		
		$[6g \sin 8 - F = 6a]$	M1		For use of Newton's second law
		Deceleration is 0.589 ms ⁻²	A1	3	Accept a = -0.589
	(ii)		M1		For use of $0 = u^2 + 2as$
		Distance is 7.64 m	A1	2	
3			M1		For using $v = \int a dt$
	$\mathbf{v} =$	$(0.8/0.25) t^{0.25} + (C)$	A1		
	C =	1.8	B1		
			M1		For using $s = \int v dt$
	s =	$(3.2/1.25)t^{1.25} + 1.8t + (K)$	A1ft		ft only from an incorrect non-zero value of C
	Dist	tance is 111 m	A1	6	
4	(i)	For triangle of forces with 60° shown correctly, or			
		$C\cos\phi = 4\cos 30$ and $C\sin\phi = 10 - 4\sin 30$, or F = $4\cos 30$ and R = $10 - 4\sin 30$	B1		
		$[C2 = 42 + 102 - 2 \times 4 \times 10\cos 60 \text{ or} C2 = (4\cos 30)2 + (10 - 4\sin 30)2]$	M1		For using cosine rule or for using $C^2 = (C\cos\phi)^2 + (C\sin\phi)^2$ or $C^2 = F^2 + R^2$
		C = 8.72	A1	3	
	(ii)	$[\mu = 4\cos 30/(10 - 4\sin 30)]$	M1		For using $\mu = F/R = C\cos\phi/C\sin\phi$
		Coefficient is 0.433 (accept 0.43)	A1	2	
4	Alte	ernative Method			
	(i)	For obtaining $\phi = 66.6^{\circ}$ or			
		$\tan\phi = 4 \div \sqrt{3} \text{ from}$ $4 \div \sin(90^\circ + \phi) = 10 \div \sin(150^\circ - \phi)$	B1		
		For using C N and (4 N or 10 N) in Lami's theorem to find C $[C \div \sin 120^\circ = (4 \div \sin 156.6^\circ \text{ or } 10 \div \sin 83.4^\circ)]$	M1		
		[C = 8.72]	A1	3	
	(;;)	$\mu = \sqrt{3} \div 4 \text{ or } \mu = \cos 66.6^\circ \div \sin 66.6^\circ$	M1	3	For using $\mu = \mathbf{E}/\mathbf{D} = C_{\text{cos}} d/C_{\text{cir}} d$
	(11)	_,		2	For using $\mu = F/R = C\cos\phi / C\sin\phi$
		Coefficient is 0.433 (accept 0.43)	A1	2	

	Pa	ge 5	Mark Scheme: Teachers	s' version		Syllabus Paper			
			GCE AS/A LEVEL – October/I	November	201				
	(i)			M1		For applying Newton's second lay to A or to B			
		0.9g – T	= 0.9a or T - 0.6g = 0.6a	A1					
		•	= 0.6a or 0.9g - T = 0.9a or f(0)g = (0.9 + 0.6)a	B1					
		Accelera	tion is 2 ms ^{-2} and tension is 7.2 N	A1	4				
	(ii)			M1		For using $0 = u - gt$			
		u = 3		A1					
		$[3^2 = 2 \times [\frac{1}{2} (0.9 +$	2 h] $(0.6)3^2 = (0.9 - 0.6)gh$]	M1		For using $v^2 = 0^2 + 2ah$ with $v_{taut} = u_{slack}$ or for using KE gain = PE loss while the string is in tension			
		Height is	2.25 m	A1	4				
	(i)	KE loss =	$= \frac{1}{2} 16000(15^2 - 12^2)$	B1					
		PE gain =	= 16000g(AB/20)	B1					
				M1		For using WD by DF = PE gain + WD against resistance – KE loss			
		1200 = 0	.8g(AB) + 1.24(AB) - 648	A1					
		Distance	AB is 200m	A1	5				
	(ii)	Distance	BD is 300m	B1	1				
	(iii)	WD agai	nst resistance =						
		1240(BC) + 1860(300 – BC)	B1ft		ft distance BD			
				M1		For using KE loss = PE gain + W against res'ce – WD by DF			
			$(12^2 - 7^2) =$ + (558000 - 620BC) - 7200 × 300	A1					
		Distance	BC is 61.3 m	A1	4				
lte	For For V_{C}^{2} :	using $v^2 =$ = 144 - 2	part (iii). a = 7200 - 1240 - 8000 and for CD 160 $e^{-1}u^{2} + 2as$ for both BC and CD $\times 0.1275(BC)$ and $49 = v_{c}^{2} - 2 \times 0.1662$ and v_{c}^{2} and obtaining BC = 61.3 m			860 – 8000 I N A			
	SR	SR for candidates who assume that the acceleration is constant in part (i), although there is no justification for the assumption (max. 3/5)							
	[120	appropria 00000÷AE	B)]						
			g a and attempting to solve for AB			N			

	Do	<u>ao 6</u>	Mark Sahama, Tasahara'	oraian		9709_w11_ms Syllabus Paper	<u>4</u>
	Page 6			Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2011			
			GCE AS/A LEVEL - October/Nov	vember 4	201	1 9709 42	
7	(i)	(a)	$[2 \times \frac{1}{2}(1+9)400]$	M1		For using area property for distant	ce
			Approximation is 4000 m	A1	2		
		(b)		M1		For using the gradient property fo acceleration	or
			Accelerations are 0.02 $ms^{-2}and-0.02ms^{-2}$	A1	2	Accept deceleration is 0.02 ms^{-2}	
	(ii)	(a)		M1		For using $a = dv/dt$ and attempting to solve $a = 0.02$ or $a = -0.02$.	g
			$0.04 - 0.0001t = \pm \ 0.02$	A1ft			
			Values of t are 200 and 600	A1	3		
		(b)	$v_1 - v = 0.02t + 1 - 0.04t + 0.00005t^2$	B1			
			$ \begin{aligned} \mathbf{v}_1 - \mathbf{v} &= [0.00005t^2 - 0.02t + 2 - 1] \\ &= 0.00005(t^2 - 400t + 40000) - 1 \\ &= 0.00005(t - 200)^2 - 1 \end{aligned} $	B1	2	AG	
		(c)	For using $(v_1 - v)_{min}$ occurs when				
			$t=200 \longrightarrow -1 \ \le \ v_1-v$	B1			
			For using $(v_1 - v)_{max}$ occurs when $t = 0$ and when $t = 400 \rightarrow v_1 - v \le 1$	B1	2		