		970	9 w10 ms 71
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2010	9709	71

1	0.605	$5 \pm z \times \sqrt{\frac{0.605 \times (1-0.605)}{1000}}$	M1		
	z = 1. [0.58]	645 seen 0, 0.630]	B1 A1	[3]	Allow [0.58, 0.63]. Allow any brackets
2	(i)	$e^{-\frac{10}{3}} \times \frac{(\frac{10}{3})^4}{4!}$	M1		Allow incorrect λ
		= 0.184 or 0.183	A1	[2]	
	(ii)	$\lambda = 5$	B1		
		$e^{-5}(1+5+\frac{5^2}{2})$	M1		Allow incorrect λ . Allow one end error
		= 0.125 (3 sfs)	A1	[3]	OR Combination method scores B1, identifying all 6 possible combinations M1, multiply each combination and add (must use at least 5 combinations) A1
3	(i)	B(40 000, 0.0001)	B1	[1]	
	(ii)	Po(4) $n = 40\ 000 > 50, \ np = 4 < 5$	B1*B B1	1*dep [3]	B1 for Po. B1 for 4 Accept 40000 large and 0.0001 small
	(iii)	1 - (P(X \le 3) or $e^{-4}(1 + 4 + \frac{4^2}{2} + \frac{4^3}{3!}))$	M1		Allow one end error (any λ)
		$1 - e^{-4} \left(1 + 4 + \frac{4^2}{2} + \frac{4^3}{3!} \right)$	M1		Expression of correct form (any λ), no end errors.
		= 0.567 or 0.566	A1	[3]	(OR Use of normal scores M1, standardising M1, standardising with correct cc A1ft, (ii) 0.599. Award A mark only if normal given in (ii)) (OR Binomial M1 expression of correct form allow end error, M1 correct form no end error, A1ft 0.567 or 0.566. Award A mark only if Bin given in (ii)) NB Part (iii) must be Poisson or ft from (ii) for A mark to be awarded. SR If no answer given in (ii) allow BOD for A marks.

9709	w710	mg	71
9109	WLU	шə	/ _

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2010	9709	71

4	(i)	$0.5(0.5+0.75) \times 0.5 \text{ or } \int_{1}^{1.5} \frac{x}{2} dx$	M1		Attempt find correct area eg 1 squ + $\frac{1}{4}$ squ
		$= \frac{5}{16}$ or 0.3125 or 0.313	A1	[2]	or integral with correct limits any $f(x)$
	(ii)	$1/_2 m \times m/_2$ or $\int_0^m \frac{x}{2} dx$	M1		Attempt area from 0 to m (or m to 2) their $f(x)$
		$= \frac{1}{2}$	M1		Expression for area = $\frac{1}{2}$. Ignore limits
		$m = \sqrt{2}$ or 1.41	A1	[3]	
	(iii)	$\int_0^2 \frac{x^2}{2} dx$	M1		Attempt $\int xf(x)dx$. Ignore limits
		$= \frac{4}{3}$ oe	A1	[2]	
5	(i)	$E(F) = 28 + 1/2 \times 52 = 54$ Var(F) = 5.6 ² + 1/4 × 12.4 ² = 69.8	B1 M1 A1	[3]	√69.8 or 8.35: M1A0
	(ii)	H ₀ : Grinford mean = 54; H ₁ ; Grinford mean < 54 49 – 54	B1ft		Allow "µ", otherwise undefined mean: B0 ft their 54
		$\overline{\sqrt{\frac{69.8}{10}}}$	M1		Standardising must have $\sqrt{10}$
		= -1.89(3) or -1,89(2) allow + Comp with -1.645 (or 1.893 with 1.645)	A1 M1		Comp P($z < -1.893$) with 0.05 Allow comparison with 1.96 for consistent 2-tail test
		Evidence that Grinford mean lower	A1ft	[5]	Allow "Accept Grinford mean lower" No contradictions OR Alt methods $(x - 54)/(\sqrt{(69.8/10)}) = 1.645$ giving x = 49.65 compare with 49 scores M1A1M1A1ft. oe. No mixed methods.

		970	9 w10 ms 71
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2010	9709	71

6	(i)	$H_0: P(6) = \frac{1}{6} H_1: P(6) > \frac{1}{6}$	B1		Allow "p"
		$1 - ((^{5}/_{6})^{10} + 10(^{1}/_{6})(^{5}/_{6})^{9} + {}^{10}C_{2}(^{1}/_{6})^{2}(^{5}/_{6})^{8})$	M1		Allow 1 term omitted or extra or incorrect
		= 0.225 (3 sts) 0.225 > 0.1	Al M1		Allow correct comparison with 0.9, and recovery of previous then M1A1
		No evidence that die biased	A1ft	[5]	Allow Accept die not biased. In context. SR Calc just P(3)max score B1M0A0M1A0
	(ii)	P(4 or more sixes)	M1		Idea of $1 - \Sigma$ of terms oe compared
		$= 1 - \left(\left(\frac{5}{6} \right)^{10} + 10 \left(\frac{1}{6} \right) \left(\frac{5}{6} \right)^9 + {}^{10}C_2 \left(\frac{1}{6} \right)^2 \left(\frac{5}{6} \right)^8 + {}^{10}C_2 \left(\frac{1}{6} \right)^2 \left(\frac{5}{6} \right)^8 \right)^{10}$	M1		with 0.1 $1 - \Sigma$ of appropriate no.terms of compared with 0.1
		= 0.0697 or 0.0698	A1	[3]	
	(iii)	Concluding die is fair when die is biased	B1	[1]	Must be in context
7 (a)	(i)	Pop too large Not all pop accessible	B1	[1]	Time consuming Or similar
	(ii)	Testing involves destruction	B1	[1]	Or similar
(b)	(i)	${}^{9850}_{500} = (19.7)$ ${}^{500}_{499} ({}^{194125}_{500} - ({}^{9850}_{500})^2)$ = 0.160(32) (3 sfs) or 80/499	B1 M1 A1	[3]	Allow with $$. Method must be seen or clearly implied.
	(ii)	$\frac{19.73 - 19.7}{\sqrt{\frac{"0.160"}{60}}}$	M1		For standardising
		= 0.580 or 0.581 1 - Φ ("0.580") (= 1 - 0.7191) = 0.281	A1ft M1	٢ ٨ ٦	ft their mean and var in (b)(i) Correct tail
		= 0.281	Al	[4]	
	(iii)	"Yes" must be seen or implied to gain mks X not nec'y normal Sample large	B1 B1	[2]	or \overline{X} is approx N (SR Both reasons correct, but wrong or no conclusion scores SR B1)