Question	Answer	Marks
1	Use of conservation of momentum	M1
	$m \times 2 + 0 = m \times (-0.5) + 0.2 \times 1$	A1
	m = 0.08	A1
		3

Question	Answer	Marks
2(a)	$F-900 = 4000 \times 0.5$ (M1 for use of Newton's second law, 3 terms)	M1
	F = 2900 N	A1
2(b)	900 \times 25 (M1 for use of $P = Fv$ with $F =$ resistance only)	M1
	22 500 W or 22.5 kW	A1

Question	Answer	Marks
3	Attempt to resolve, either direction with correct number of terms	M1
	$F\cos\alpha = 40\sin 30 + 20\sin 60 - 50\sin 45 \ (= 1.965)$	A1
	$F\sin\alpha = 50\cos45 + 20\cos60 - 40\cos30 \ (= 10.714)$	A1
	Method for either F or α	M1
	$F = \sqrt{\left(\left(1.965\right)^2 + \left(10.714\right)^2\right)} = 10.9(10.893)$	A1
	$\alpha = \tan^{-1}(10.714/1.965) = 79.6 (79.606)$	A1
		6

Question	Answer	Marks
4(a)	Trapezium shape with gradient of right-hand side approximately 2 times left side	B1
		1
4(b)	Constant velocity = $500/25 = 20 \text{ ms}^{-1}$	B1
	$20^2 = 0 + 2a \times 50$	M1
	<i>a</i> = 4	A1
		3
4(c)	Time to accelerate = $20/4 = 5$ s	B1
	Deceleration time = 2.5 s	B1
	So total time = $5 + 25 + 2.5 = 32.5$ s	B1
		3

Question	Answer	Marks
5(a)	Decrease in KE = $\frac{1}{2} \times 4 \times (12^2 - 8^2)$	M1
	160 J	A1
		2
5(b)	PE gained = $4g \times 10\sin 30$ (= 200)	B1
	Total work done = $200 - 160$	M1
	Total work done = 40 J	A1 FT
		3
5(c)	$-4g\sin 30 = 4a$	M1
	a = -5	A1
	$-10 = 8t - \frac{1}{2} \times 5t^2$	M1
	t = 4.16 s	A1
		4

Question	Answer	Marks
6(a)	a=4-t (M1 for differentiation)	M1
	When $a = 0, t = 4$	A1
	At $t = 4$, $v = 12.5$	A1
		3
6(b)	Velocity = 0 when $4.5 + 4t - 0.5t^2 = 0$	M1
	t = 9 (reject t = -1)	A1
	$\int (4.5 + 4t - 0.5t^2) dt$	M1
	$4.5t + 2t^2 - \frac{1}{6}t^3 [+c]$	A1
	Apply limits (0 and 9)	M1
	Distance = 81 m	A1
		6

Question	Answer	Marks
7(a)	T - 2mg = 0	B1
	$3mg \sin \theta - T = 0$ (M1 for resolving forces parallel to the plane and solving for θ)	M1
	$\theta = 41.8 (41.810)$	A1
		3
7(b)	$R = 3mg\cos 30$	B1
	Use of $F = \mu R$	M1
	$2mg - T = 0.1 \times 2m \text{OR} T - 3mg\sin 30 - \mu \times 3mg\cos 30 = 0.1 \times 3m$	M1
	$2mg - 0.2m - 3mg\sin 30 - \mu \times 3mg\cos 30 = 0.1 \times 3m$	M1
	$\mu = \frac{\sqrt{3}}{10}$	A1
		5
7(c)	$v^2 = 0 + 2 \times 0.1 \times 0.8$ (v = 0.4)	M1
	$-3mg\sin 30 - \mu \times 3mg\cos 30 = 3ma \ (a = -6.5)$	M1
	0 = -0.4 - 6.5t	M1
	t = 0.4/6.5 = 0.0615 s	A1
		4