		0_ <u>520_</u> mb_
Question	Answer	Marks
1	Commence division and reach partial quotient $3x^2 + kx$	M1
	Obtain quotient $3x^2 + 2x - 1$	A1
	Obtain remainder $2x - 5$	A1
		4

Question	Answer	Marks
2	State or imply $2 \ln y = \ln A + kx$	B1
	Substitute values of $\ln y$ and x , or equate gradient of line to k , and solve for k	M1
	Obtain $k = 0.80$	A1
	Solve for ln A	M1
	Obtain $A = 3.31$	A1
	Alternative method for question 2	
	Obtain two correct equations in y and x by substituting y - and x - values in the given equation	B1
	Solve for <i>k</i>	M1
	Obtain $k = 0.80$	A1
	Solve for A	M1
	Obtain $A = 3.31$	A1
		5

9709/32

Cambridge International A Level – Mark Scheme PUBLISHED

9709_s20_ms_32

Question	Answer	Marks
3	Commence integration and reach $ax^{\frac{5}{2}} \ln x + b \int x^{\frac{5}{2}} \cdot \frac{1}{x} dx$	M1*
	Obtain $\frac{2}{5}x^{\frac{5}{2}}\ln x - \frac{2}{5}\int x^{\frac{5}{2}} \cdot \frac{1}{x}dx$	A1
	Complete the integration and obtain $\frac{2}{5}x^{\frac{5}{2}}\ln x - \frac{4}{25}x^{\frac{5}{2}}$, or equivalent	A1
	Use limits correctly, having integrated twice e.g $\frac{2}{5} \times 32 \ln 4 - \frac{4}{25} \times 32 - \left(\frac{2}{5} \times 0\right) + \frac{4}{25}$	DM1
	Obtain answer $\frac{128}{5}\ln 2 - \frac{124}{25}$, or exact equivalent	A1
		5

Question	Answer	Marks
4	Use correct product rule	M1
	Obtain correct derivative in any form, e.g. $-\sin x \sin 2x + 2\cos x \cos 2x$	A1
	Use double angle formula to express derivative in terms of $\sin x$ and $\cos x$	M1
	Equate derivative to zero and obtain an equation in one trig function	M1
	Obtain $3 \sin 2x = 1$, or $3 \cos 2x = 2$ or $2 \tan 2x = 1$	A1
	Solve and obtain $x = 0.615$	A1
		6

Question	Answer	Marks
5(a)	State $R = \sqrt{7}$	B1
	Use trig formulae to find α	M1
	Obtain $\alpha = 57.688^{\circ}$	A1
		3
5(b)	Evaluate $\cos -1\left(\frac{1}{\sqrt{7}}\right)$ to at least 3 d.p. (67.792°)	B1 FT
	(FT is on <i>their R</i>)	
	Use correct method to find a value of θ in the interval	M1
	Obtain answer, e.g. 5.1°	A1
	Obtain second answer, e.g.117.3°, only	A1
		4

6(a)	Use quotient or product rule	M1
	Obtain correct derivative in any form e.g. $\frac{(1+3x^4) - x \times 12x^3}{(1+3x^4)^2}$	A1
	Equate derivative to zero and solve for <i>x</i>	M1
	Obtain answer 0.577	A1
		4

	rudlished	<u>9709_s20_ms</u>
Question	Answer	Marks
6(b)	State or imply $du = 2\sqrt{3x} dx$, or equivalent	B1
	Substitute for <i>x</i> and d <i>x</i>	M1
	Obtain integrand $\frac{1}{2\sqrt{3(1+u^2)}}$, or equivalent	A1
	State integral of the form $a \tan^{-1} u$ and use limits $u = 0$ and $u = \sqrt{3}$ (or $x = 0$ and $x = 1$) correctly	M1
	Obtain answer $\frac{\sqrt{3}}{18}\pi$, or exact equivalent	A1
		5

Question	Answer	Marks
7	Separate variables correctly and integrate at least one side	B1
	Obtain term $\ln(y-1)$	B1
	Carry out a relevant method to determine A and B such that $\frac{1}{(x+1)(x+3)} \equiv \frac{A}{x+1} + \frac{B}{x+3}$	M1
	Obtain $A = \frac{1}{2}$ and $B = -\frac{1}{2}$	A1
	Integrate and obtain terms $\frac{1}{2}\ln(x+1) - \frac{1}{2}\ln(x+3) \frac{1}{2}\ln(x+1) - \frac{1}{2}\ln(x+3)$, or equivalent (FT is on A and B)	A1 FT + A1 FT
	Use $x = 0$, $y = 2$ to evaluate a constant, or as limits in a solution containing terms of the form $a \ln(y-1)$, $b \ln(x+1)$ and $c \ln(x+3)$, where $abc \neq 0$	M1
	Obtain correct answer in any form	A1
	Obtain final answer $y = 1 + \sqrt{\left(\frac{3x+3}{x+3}\right)}$, or equivalent	A1
		9

Question	Answer	Marks
8(a)	Substitute and obtain a correct equation in x and y	B1
	Use $i^2 = -1$ and equate real and imaginary parts	M1
	Obtain two correct equations in x and y, e.g. $x - y = 3$ and $3x + y = 5$	A1
	Solve and obtain answer $z = 2 - i$	A1
		4
8(b)(i)	Show a point representing 2 + 2i	B1
	Show a circle with radius 1 and centre not at the origin (FT is on the point representing the centre)	B1 FT
	Show the correct half line from 4i	B1
	Shade the correct region	B1
		4
8(b)(ii)	Carry out a complete method for finding the least value of Im z	M1
	Obtain answer $2 - \frac{1}{2}\sqrt{2}$, or exact equivalent	A1
		2

Question	Answer	Marks
9(a)	State $\cos p = \frac{k}{1+p}$	B1
	Differentiate both equations and equate derivatives at $x = p$	M1
	Obtain a correct equation in any form, e.g. $-\sin p = -\frac{k}{(1+p)^2}$	A1
	Eliminate k	M1
	Obtain the given answer showing sufficient working	A1
		5
9(b)	Use the iterative formula correctly at least once	M1
	Obtain final answer $p = 0.568$	A1
	Show sufficient iterations to justify 0.568 to 3 d.p., or show there is a sign change in the interval (0.5675, 0.5685)	A1
		3
9(c)	Use a correct method to find <i>k</i>	M1
	Obtain answer $k = 1.32$	A1
		2

Question	Answer	Marks
10(a)	State that the position vector of M is $3\mathbf{i} + \mathbf{j}$	B1
	Use a correct method to find the position vector of N	M1
	Obtain answer $\frac{10}{3}\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$	A1
	Use a correct method to form an equation for MN	M1
	Obtain correct answer in any form, e.g. $\mathbf{r} = 3\mathbf{i} + \mathbf{j} + \lambda \left(\frac{1}{3}\mathbf{i} + \mathbf{j} + 2\mathbf{k}\right)$	A1
		5
10(b)	State or imply $\mathbf{r} = \mu(2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ as equation for <i>OB</i>	B1
	Equate sufficient components of <i>MN</i> and <i>OB</i> and solve for λ or for μ	M1
	Obtain $\lambda = 3$ or $\mu = 2$ and position vector $4\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$ for <i>P</i>	A1
		3
10(c)	Carry out correct process for evaluating the scalar product of direction vectors for OP and MP, or equivalent	M1
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	M1
	Obtain answer 21.6°	A1
		3