Question	Answer	Marks
1	Use correct logarithm property to produce one term on LHS	M1
	Use correct process to obtain equation without logarithms	M1
	Obtain $\frac{x+1}{x} = 4$ or equivalent and hence $x = \frac{1}{3}$	A1
		3

Question	Answer	Marks
2	Substitute $x = 2$ and equate to zero	M1
	Substitute $x = -\frac{1}{2}$ and equate to zero	M1
	Obtain $4a+b+66=0$ and $\frac{1}{4}a+b-\frac{21}{4}=0$ or equivalents	A1
	Solve a relevant pair of linear simultaneous equations (Dependent on at least one M mark)	DM1
	Obtain $a = -19$, $b = 10$	A1
		5

Question	Answer	Marks
3	State $\frac{dx}{dt} = e^t + 2e^{-t}$, $\frac{dy}{dt} = 6e^{2t}$	B1
	Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ either in terms of t or after substitution of $t = 0$	*M1
	Obtain gradient of tangent is 2	A1
	Attempt equation of tangent with numerical gradient and coordinates	DM1
	Obtain $y = 2x + 6$ or equivalent	A1
		5

Question	Answer	Marks
4(a)	Draw two V-shaped graphs with one vertex on negative <i>x</i> -axis and one vertex on positive <i>x</i> -axis	M1
	Draw correct graphs related correctly to each other	A1
	State correct coordinates $-\frac{2}{3}a$, $2a$, $\frac{4}{3}a$, $4a$	A1
		3
4(b)	Solve linear equation with signs of $3x$ different or solve non-modulus equation $(3x+2a)^2 = (3x-4a)^2$	M1
	Obtain $x = \frac{1}{3}a$	A1
	Obtain $y = 3a$	A1
		3

Question	Answer	Marks
4(c)	State $x < \frac{1}{3}a$ (FT from part (b))	B1FT
		1

Question	Answer	Marks
5(a)	Differentiate using the product rule to obtain $ax^2 \cos 2x - bx^3 \sin 2x$	M1
	Obtain $3x^2 \cos 2x - 2x^3 \sin 2x$	A1
	Equate first derivative to zero and confirm $x = \sqrt[3]{1.5x^2 \cot 2x}$ AG	A1
		3
5(b)	Consider sign of $x - \sqrt[3]{1.5x^2 \cot 2x}$ or equivalent for 0.59 and 0.60	M1
	Obtain -0.009 and 0.005 or equivalents and justify conclusion	A1
		2
5(c)	Use iteration correctly at least once	M1
	Obtain final answer 0.596	A1
	Show sufficient iterations to 5 sf to justify answer or show sign change in interval [0.5955, 0.5965]	A1
		3

Question	Answer	Marks
6(a)	Express left-hand side in terms of $\sin \theta$ and $\cos \theta$	M1
	Obtain $2\cos\theta - 2\sin\theta$	A1
	Attempt to express $a\cos\theta + b\sin\theta$ in $R\cos(\theta + \beta)$ form	M1
	Confirm $R = \sqrt{8}$ AG	A1
	Carry out necessary trigonometry and confirm $\frac{1}{4}\pi$ AG	A1
		5
6(b)	Carry out correct process to find θ from $\cos\left(\theta + \frac{1}{4}\pi\right) = \frac{1}{\sqrt{8}}$	M1
	Obtain 0.424	A1
		2
6(c)	Express integrand as $\sqrt{8}\cos\left(\frac{1}{2}x + \frac{1}{4}\pi\right)$ or as $2\cos\frac{1}{2}x - 2\sin\frac{1}{2}x$	B1
	Integrate to obtain $k \sin\left(\frac{1}{2}x + \frac{1}{4}\pi\right)$ or $k_1 \sin\frac{1}{2}x + k_2 \cos\frac{1}{2}x$	M1
	Obtain correct $2\sqrt{8}\sin\left(\frac{1}{2}x + \frac{1}{4}\pi\right)$ or $4\sin\frac{1}{2}x + 4\cos\frac{1}{2}x$	A1
		3

Question	Answer	Marks
7(a)	Carry out division at least as far as $3x^2 + kx$	M1
	Obtain quotient $3x^2 - 4x - 4$	A1
	Confirm remainder is 9 AG	A1
		3
7(b)	Integrate to obtain at least $k_1 x^3$ and $k_2 \ln(3x+2)$ terms	*M1
	Obtain $x^3 - 2x^2 - 4x + 3\ln(3x + 2)$ (FT from quotient in part (a))	A1FT
	Apply limits correctly	DM1
	Apply appropriate logarithm properties correctly	M1
	Obtain 125 + ln 64	A1
		5
7(c)	State or imply $9x^3 - 6x^2 - 20x - 8 = (3x + 2)(3x^2 - 4x - 4)$ (FT from quotient in part (a))	B1FT
	Attempt to solve cubic eqn to find positive value of x (or of e^{3y})	M1
	Use logarithms to solve equation of form $e^{3y} = k$ where $k > 0$	M1
	Obtain $\frac{1}{3} \ln 2$ or exact equivalent	A1
		4