9709/42

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709 s19 ms 42

Question	Answer	Marks	Guidance
1	$[P \cos \theta = 32 \cos 20 - 17 \sin 55]$ [P \sin \theta = 40 + 17 \cos 55 - 32 \sin 20]	M1	Resolve forces horizontally or vertically 3 terms horizontally, 4 terms vertically
		A1	One correct
		A1	Both correct [$P \sin \theta = 38.8062$ $P \cos \theta = 16.1446$]
	$P = \sqrt{\left(17\cos 55 - 32\sin 20 + 40\right)^2 + \left(32\cos 20 - 17\cos 35\right)^2}$	M1	Either use Pythagoras to find P or use their value of θ to find P
	$\theta = \tan^{-1} \left[\frac{(17\cos 55 - 32\sin 20 + 40)}{(32\cos 20 - 17\cos 35)} \right]$	M1	Either use trigonometry to find θ or use their value of P to find θ [tan θ = 2.4037]
	$P = 42(.0)$ and $\theta = 67.4$	A1	
		6	

9709/42

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

Question	Answer	Marks	Guidance
2	Possible equations include: $t = 0$ to $t = 5 \rightarrow 80 = 5u + 12.5a$ $t = 0$ to $t = 8 \rightarrow 160 = 8u + 32a$ $t = 5$ to $t = 8 \rightarrow 80 = 3(u + 5a) + 4.5a$ i.e. $80 = 3u + 19.5a$	M1	Use the equation $s = ut + \frac{1}{2}at^2$ to set up one equation in <i>u</i> and <i>a</i> or using speeds as <i>u</i> (at <i>t</i> = 0), <i>u</i> + 5 <i>a</i> (at <i>t</i> = 5), <i>u</i> + 8 <i>a</i> (at <i>t</i> = 8) and then apply $s = \frac{1}{2} \times (u + v) \times t$
	$80 = 5u + \frac{1}{2} \times a \times 5^2 \longrightarrow 5u + 12.5a = 80$	A1	One correct equation in <i>a</i> and <i>u</i>
	$160 = 8u + 0.5a \times 8^2 \rightarrow 8u + 32a = 160$	A1	Second correct equation in <i>a</i> and <i>u</i>
		M1	Attempt to solve a pair of valid simultaneous equations for a or u
	$a = \frac{8}{3}$	A1	Allow <i>a</i> = 2.67
	$u = \frac{28}{3}$	A1	Allow $u = 9.33$
		6	

May/June 2019

Question	Answer	Marks	Guidance
3	$R = 13g \cos 22.6 = 13g \times (12/13), [R = 120]$	B1	Resolve perpendicular to the plane
	$F = 0.3 \times 13g \cos 22.6 [F = 36]$	M1	Using $F = \mu R$
	$T = F + 13g \sin 22.6 = F + 13g \times (5/13), [T = 86]$	M1	Apply Newton's second law parallel to the plane with $a = 0$
	$WD = T \times 2.5 [= 86 \times 2.5]$	M1	$WD = T \times d$
	WD = 215 J	A1	
	Alternative method for question 3		
	$R = 13g \cos 22.6 = 13g \times (12/13), [R = 120]$	B1	Resolve perpendicular to the plane
	$F = 0.3 \times 13g \cos 22.6 [F = 36]$	M1	Using $F = \mu R$
	PE gain = $13 \times g \times 2.5 \times (5/13)$ [= 125]	M1	Attempt PE gain. Allow sin 22.6 for 5/13
	[WD by $T = 13 \times g \times 2.5 \times (5/13) + F \times 2.5$]	M1	Using WD by $T = PE$ gain + WD against F
	WD by $T = 215 \text{ J}$	A1	
		5	

May/June 2019

9709 s19 ms 42

Question	Answer	Marks	Guidance
4	$[1200 - 350 - 1250 \times 10 \times 0.05 = 1250a]$	M1	Apply Newton's second law for motion up the hill
	[a = 225/1250 = 0.18]	A1	Correct Newton's law for motion up the hill
	$[1200 - 350 + 1250 \times 10 \times 0.05 = 1250a]$	M1	Apply Newton's second law for motion down the hill
	[a = 1475/1250 = 1.18]	A1	Correct Newton's law for motion down the hill
	Up the hill: $v^2 = 0 + 2 \times 0.18 \times 100$ Down the hill: $v^2 = 0 + 2 \times 1.18 \times 100$	M1	Use their a in the constant acceleration equations either to find v going up or going down the hill
	Up the hill: $v = 6 \text{ ms}^{-1}$	A1	
	Down the hill: $v = 15.4 \text{ ms}^{-1}$	A1	Allow $v = 2\sqrt{59}$
	Alternative method for question 4		
	$[1200 \times 100 = 350 \times 100 + 1250g \times 100 \times 0.05 + \frac{1}{2} \times 1250 \times v^2]$	M1	Attempt the work-energy equation for motion up the hill
		A1	Correct work-energy equation for motion up the hill
	$[1200 \times 100 + 1250g \times 100 \times 0.05 = 350 \times 100 + \frac{1}{2} \times 1250 \times v^{2}]$	M1	Attempt work-energy equation for motion down the hill
		A1	Correct work-energy equation for motion down the hill
		M1	Attempt to solve either energy equation to find either <i>v</i> going up the hill or <i>v</i> going down the hill
	Up the hill: $v = 6 \text{ ms}^{-1}$	A1	
	Down the hill: $v = 15.4 \text{ ms}^{-1}$	A1	Allow $v = 2\sqrt{59}$
		7	

9709/42

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

Question	Answer	Marks	Guidance
5(i)	A: $4 - T = 0.4a$ B: $T - 2 = 0.2a$ System: $4 - 2 = (0.4 + 0.2)a$	M1	Apply Newton' second law to particle <i>A</i> (3 terms) or to particle <i>B</i> (3 terms) or to the system (4 terms implied)
		A1	Two correct equations
		M1	Either solve the system equation for a or solve two simultaneous equations for a or T or verify the given value of a by finding the same T value in both equations
	$a = \frac{10}{3}, T = \frac{8}{3}$	A1	Both correct AG
		4	
5(ii)		M1	Apply $v^2 = u^2 + 2as$ to particle <i>A</i> or particle <i>B</i> with $a = 10/3$
	$v^2 = 0 + 2 \times 10/3 \times 0.5$	A1	[v = 1.83 but not needed specifically]
	$0 = 10/3 - 2 \times 10 \times s$ [$s = \frac{1}{6}$]	M1	Apply $v^2 = u^2 + 2as$ to particle <i>B</i> to find <i>s</i> , the distance travelled by <i>B</i> after <i>A</i> has hit the ground
	Maximum height = $\frac{7}{6}$ = 1.17 m	A1	Maximum height = $1/2 + 1/2 + 1/6 = 7/6 = 1.17$
		4	

May/June 2019

Question	Answer	Marks	Guidance
6	Case 1: $DF = 36000/18$	B1	DF = P/v in either case
	or Case 2: $DF = 21000/12$		
	18A + B = DF [36000/18 = 18A + B = 2000]	M1	Use DF = resistance (case 1)
	18A + B = 2000 oe	A1	Correct equation, unsimplified
	12A + B = DF + weight component [21000/12 = $12A + B + 1000 g \times 1/20$]	M1	Use DF = resistance + weight component (case 2)
	12A + B = 1250 oe	A1	Correct equation, unsimplified
		DM1	Solve two simultaneous equations in <i>A</i> and <i>B</i> only for <i>A</i> or <i>B</i> Dependent on both previous M1's
	A = 125, B = -250	A1	Both correct
		7	

Question	Answer	Marks	Guidance
7(i)	Straight line, reaching positive <i>v</i> -axis and positive <i>t</i> -axis (negative gradient)	B1	
	Quadratic (U shape, through (0,0) and cutting <i>t</i> -axis at $t < 5$)	B1	
	Fully correct graphs with correct labelling with $t = 3, t = 5, v = 10, v = 60$ seen	B1	
		3	
7(ii)	$s = \int (10 - 2t) dt = 10t - t^2 (+ c)$ or use area of a triangle ¹ / ₂ × 10 × 5 [= 25]	B1	Use either integration to find s for Q or use a correct formula to find the area under the relevant triangle
		M1	Use integration to find the displacement for <i>P</i>
	$s = \int (6t^2 - 18t) dt = 2t^3 - 9t^2 (+c)$	A1	Correct integration for <i>P</i> (unsimplified)
	$s(P) = \left[2t^{3} - 9t^{2}\right]_{0}^{5} = 25$ or solve $10t - t^{2} = 2t^{3} - 9t^{2}$	B1	Either evaluation of $s(P)$ at $t = 5$ and show that at $t = 5$, $s(P) = s(Q)$ = 25 or show that $t = 5$ is a solution of the cubic by solving or verify $t = 5$ is a solution of the cubic by substitution.
		4	

May/June 2019

Question	Answer	Marks	Guidance
7(iii)	Distance $PQ = s_P - s_Q = \pm (2t^3 - 8t^2 - 10t)$	M1	Find the distance between <i>P</i> and <i>Q</i> Allow either sign s_P and s_Q must have been found by integration
	Maximum s if $6t^2 - 16t - 10 = 0$	M1	Differentiate to obtain an equation in <i>t</i> and attempt to solve
	t = 3.19	A1	
	Maximum Distance $PQ = (-)48.4 \text{ m}$	A1	
	Alternative method for question 7(iii)		
	$6t^2 - 18t = 10 - 2t$	M1	State that greatest distance between <i>P</i> and <i>Q</i> occurs when $v_P = v_Q$
	$6t^2 - 16t - 10 = 0$	M1	Rearrange and attempt to solve for <i>t</i>
	t = 3.19	A1	
	Maximum Distance $PQ = (-)48.4 \text{ m}$	A1	
		4	