May/June 2019

Question	Answer	Marks	Guidance
1	State unsimplified term in x^2 , or its coefficient in the expansion of $(1+3x)^{\frac{1}{3}} \left(\frac{\frac{1}{3} \times \frac{-2}{3}}{2} (3x)^2\right)$	B1	Symbolic binomial coefficients are not sufficient for the B marks
	State unsimplified term in x^3 , or its coefficient in the expansion of $(1+3x)^{\frac{1}{3}} \left(\frac{\frac{1}{3} \times \frac{-2}{3} \times \frac{-5}{3}}{6} (3x)^3\right)$	B1	
	Multiply by $(3 - x)$ to give 2 terms in x^3 , or their coefficients	M1	$\left(3 \times \frac{10}{6} + 1\right)$ Ignore errors in terms other than x^3 $3 \times x^3 \operatorname{coeff} - x^2 \operatorname{coeff}$ and no other term in x^3
	Obtain answer 6	A1	Not $6x^3$
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
2	State or imply $u^2 - u - 12(=0)$, or equivalent in 3^x	B1	Need to be convinced they know $3^{2x} = (3^x)^2$
	Solve for u , or for 3^x , and obtain root 4	B1	
	Use a correct method to solve an equation of the form $3^x = a$ where a >0	M1	Need to see evidence of method. Do not penalise an attempt to use the negative root as well. e.g. $x \ln 3 = \ln a$, $x = \log_3 a$ If seen, accept solution of straight forward cases such as $3^x = 3$, $x = 1$ without working
	Obtain final answer $x = 1.26$ only	A1	The Q asks for 2 dp
		4	

May/June 2019

Question	Answer	Marks	Guidance
3	Use correct trig formulae to obtain an equation in tan θ or equivalent (e.g all in sin θ or all in cos θ)	*M1	$\frac{1 - \tan^2 \theta}{2 \tan \theta} = 2 \tan \theta \text{ Allow } \frac{\cot^2 \theta - 1}{2 \cot \theta} = \frac{2}{\cot \theta}$
	Obtain a correct simplified equation	A1	$5\tan^2\theta = 1$ or $\sin^2\theta = \frac{1}{6}$ or $\cos^2\theta = \frac{5}{6}$
	Solve for θ	DM1	Dependent on the first M1
	Obtain answer 24.1° (or 155.9°)	A1	One correct in range to at least 3 sf
	Obtain second answer	A1	FT 180° – <i>their</i> 24.1° and no others in range. Correct to at least 3 sf. Accept 156° but not 156.0 Ignore values outside range If working in tan θ or cos θ need to be considering both square roots to score the second A1 Mark 0.421, 2.72 as a MR, so A0A1
		5	

May/June 2019

Question	Answer	Marks	Guidance
4	Use correct quotient rule	M1	Allow use of correct product rule on $x \times (1 + \ln x)^{-1}$
	Obtain correct derivative in any form	A1	$\frac{dy}{dx} = \frac{(1+\ln x) - x \times \frac{1}{x}}{(1+\ln x)^2} = \left(\frac{1}{1+\ln x} - \frac{1}{(1+\ln x)^2}\right)$
	Equate derivative to $\frac{1}{4}$ and obtain a quadratic in ln <i>x</i> or (1+ ln <i>x</i>)	M1	Horizontal form. Accept $\ln x = \frac{1}{4} (1 + \ln x)^2$
	Reduce to $(\ln x)^2 - 2\ln x + 1 = 0$	A1	or 3-term equivalent. Condone $\ln x^2$ if later used correctly
	Solve a 3-term quadratic in $\ln x$ for x	M1	Must see working if solving incorrect quadratic
	Obtain answer $x = e$	A1	Accept e ¹
	Obtain answer $y = \frac{1}{2}$ e	A1	Exact only with no decimals seen before the exact value. Accept $\frac{e^1}{2}$ but not $\frac{e}{1+\ln e}$
		7	

Question	Answer	Marks	Guidance
5(i)	State answer $-1 - \sqrt{3}i$	B1	If $-\frac{1}{2}$ given as well at this point, still just B1
		1	

May/June 2019

Answer	Marks	Guidance
Substitute $x = -1 + \sqrt{3}i$ in the equation and attempt expansions of x^2 and x^3	M1	Need to see sufficient working to be convinced that a calculator has not been used.
Use $i^2 = -1$ correctly at least once	M1	Allow for relevant use at any point in the solution
Obtain $k = 2$	A1	
Carry out a complete method for finding a quadratic factor with zeros $-1 + \sqrt{3}i$ and $-1 - \sqrt{3}i$	M1	Could use factor theorem from this point. Need to see working. M1 for correct testing of correct root or allow M1 for three unsuccessful valid attempts.
Obtain $x^2 + 2x + 4$	A1	Using factor theorem, obtain $f\left(-\frac{1}{2}\right) = 0$
Obtain root $x = -\frac{1}{2}$, or equivalent, <i>via</i> division or inspection	A1	Final answer
	AnswerSubstitute $x = -1 + \sqrt{3}i$ in the equation and attempt expansions of x^2 and x^3 Use $i^2 = -1$ correctly at least onceObtain $k = 2$ Carry out a complete method for finding a quadratic factor with zeros $-1 + \sqrt{3}i$ and $-1 - \sqrt{3}i$ Obtain $x^2 + 2x + 4$ Obtain root $x = -\frac{1}{2}$, or equivalent, <i>via</i> division or inspection	AnswerMarksSubstitute $x = -1 + \sqrt{3}i$ in the equation and attempt expansions of x^2 and x^3 M1Use $i^2 = -1$ correctly at least onceM1Obtain $k = 2$ A1Carry out a complete method for finding a quadratic factor with zeros $-1 + \sqrt{3}i$ and $-1 - \sqrt{3}i$ M1Obtain $x^2 + 2x + 4$ A1Obtain root $x = -\frac{1}{2}$, or equivalent, via division or inspectionA1

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
5(ii)	Alternative method 1		
	Carry out a complete method for finding a quadratic factor with zeros $-1 + \sqrt{3}i$ and $-1 - \sqrt{3}i$ (multiplying two linear factors or using sum and product of roots)	M1	Need to see sufficient working to be convinced that a calculator has not been used.
	Use $i^2 = -1$ correctly at least once	M1	Allow for relevant use at any point in the solution
	Obtain $x^2 + 2x + 4$	A1	Allow M1A0 for $x^2 + 2x + 3$
	Obtain linear factor $kx + 1$ and compare coefficients of x or x^2 and solve for k	M1	Can find the factor by inspection or by long division Must get to zero remainder
	Obtain $k = 2$	A1	
	Obtain root $x = -\frac{1}{2}$	A1	Final answer
			Note: Verification that $x = -\frac{1}{2}$ is a root is worth no marks without a clear demonstration of how the root was obtained

May/June 2019

Question	Answer	Marks	Guidance
5(ii)	Alternative method 2		
	Use equation for sum of roots of cubic and use equation for product of roots of cubic	M1	
	Use $i^2 = -1$ correctly at least once	M1	Allow for relevant use at any point in the solution
	Obtain $-\frac{5}{k} = -2 + \gamma$, $-\frac{4}{k} = 4\gamma$	A1	
	Solve simultaneous equations for k and γ	M1	
	Obtain $k = 2$	A1	
	Obtain root $\gamma = -\frac{1}{2}$	A1	Final answer
		6	

Question	Answer	Marks	Guidance
6(i)	Correct use of trigonometry to obtain $AB = 2r \cos x$	B1	AG
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
6(ii)	Use correct method for finding the area of the sector and the semicircle and form an equation in x	M1	$\frac{1}{2} \times \frac{1}{2} \pi r^2 = \frac{1}{2} (2r \cos x)^2 2x$
	Obtain $x = \cos^{-1} \sqrt{\frac{\pi}{16x}}$ correctly AG	A1	Via correct simplification e.g. from $\cos^2 x = \frac{\pi}{16x}$
		2	
6(iii)	Calculate values of a relevant expression or pair of expressions at $x = 1$ and $x = 1.5$ Must be working in radians	M1	$x = 1 1 \to 1.11 \text{f}(1) = 1.11$ e.g. $x = 1.5 1.5 \to 1.20 \text{Accept} f(1.5) = 1.20$ $f(x) = x - \cos^{-1} \sqrt{\frac{\pi}{16x}} : f(1) = -0.111., f(1.5) = 0.3$ $f(x) = \cos x - \sqrt{\frac{\pi}{16x}} : f(1) = 0.097., f(1.5) = -0.291.$ For $16x \cos^2 x - \pi$ $ f(1) = 1.529, f(1.5) = -3.02$ Must find values. M1 if at least one value correct
	Correct values and complete the argument correctly	A1	
		2	

May/June 2019

Question	Answer	Marks	Guidance
6(iv)	Use $x_{n+1} = \cos^{-1} \sqrt{\left(\frac{\pi}{16x_n}\right)}$ correctly at least twice Must be working in radians	M1	1,1.11173,1.13707,1.14225,1.14329,1.14349, 1.14354,1.14354 1.25,1.16328,1.14742,1.14432,1.14370 1.5,1.20060,1.15447,1.14570,1.14397,1.14363
	Obtain final answer 1.144	A1	
	Show sufficient iterations to at least 5 d.p. to justify 1.144 to 3 d.p. or show there is a sign change in the interval (1.1435, 1.1445)	A1	
		3	

May/June 2019

Question	Answer	Marks	Guidance
7(i)	Separate variables correctly and attempt integration of at least one side	B1	$\int e^{-y} dy = \int x e^{x} dx$
	Obtain term $-e^{-y}$	B1	B0B1 is possible
	Commence integration by parts and reach $xe^x \pm \int e^x dx$	M1	B0B0M1A1 is possible
	Obtain $xe^x - e^x$	A1	or equivalent
			B1B1M1A1 is available if there is no constant of integration
	Use $x = 0$, $y = 0$ to evaluate a constant, or as limits in a definite integral, in a solution with terms ae^{-y} , bxe^{x} and ce^{x} , where $abc \neq 0$	M1	Must see this step
	Obtain correct solution in any form	A1	e.g. $e^{-y} = e^x - xe^x$
	Rearrange as $y = -\ln(1-x) - x$	A1	or equivalent e.g. $y = \ln \frac{1}{e^x (1-x)}$ ISW
		7	
7(ii)	Justify the given statement	B1	e.g. require $1-x > 0$ for the ln term to exist, hence $x < 1$ Must be considering the range of values of x, and must be relevant to <i>their</i> y involving $\ln(1-x)$
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
8(i)	State or imply the form $\frac{A}{2x+1} + \frac{B}{2x+3} + \frac{C}{(2x+3)^2}$	B1	
	Use a correct method to find a constant	M1	
	Obtain the values $A = 1, B = -1, C = 3$	A1 A1 A1	
	[Mark the form $\frac{A}{2x+1} + \frac{Dx+E}{(2x+3)^2}$, where $A = 1, D = -2$ and $E = 0$ B1M1A1A1A1 as above]		Full marks for the three correct constants – do not actually need to see the partial fractions
		5	
8(ii)	Integrate and obtain terms $\frac{1}{2}\ln(2x+1) - \frac{1}{2}\ln(2x+3) - \frac{3}{2(2x+3)}$ [Correct integration of the <i>A</i> , <i>D</i> , <i>E</i> form of fractions gives $\frac{1}{2}\ln(2x+1) + \frac{x}{2x+3} - \frac{1}{2}\ln(2x+3)$ if integration by parts is used for the second partial fraction.]	B1 B1 B1	FT on <i>A</i> , <i>B</i> and <i>C</i> .
	Substitute limits correctly in an integral with terms $a \ln(2x+1)$, $b \ln(2x+3)$ and $c/(2x+3)$, where $abc \neq 0$ If using alternative form: $cx/(2x+3)$	M1	value for upper limit – value for lower limit 1 slip in substituting can still score M1 Condone omission of $ln(1)$
	Obtain the given answer following full and correct working	A1	Need to see at least one interim step of valid log work. AG
		5	

May/June 2019

Question	Answer	Marks	Guidance									
9(i)	Carry out correct method for finding a vector equation for <i>AB</i>	M1										
	Obtain $(\mathbf{r} =)\mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + 2\mathbf{k})$, or equivalent	A1										
	Equate two pairs of components of general points on <i>their AB</i> and <i>l</i> and solve for λ or for μ	M1		$+2\lambda$ $2-\lambda$ 1+2.	$\begin{pmatrix} \lambda \end{pmatrix} = \begin{pmatrix} \lambda \end{pmatrix}$	$2 + \mu$ $1 + \mu$ $1 + 2\mu$						
	Obtain correct answer for λ or μ , e.g. $\lambda = 0$, $\mu = -1$	A1										
	Verify that all three equations are not satisfied and the lines fail to	A1	A1 Alternatives									
	intersect (\neq is sufficient justification e.g. $2 \neq 0$) Conclusion needs to follow correct values			A	λ	μ		B	λ	μ		
				ij	2/3	$\frac{1}{3}$	$\frac{1}{3} \neq \frac{5}{3}$		-1/3	1/3	$\frac{1}{3} \neq \frac{5}{3}$	1
				ik	0	-1	2 ≠ 0		-1	-1	2 ≠ 0	1
				jk	1	0	3≠2		0	0	3≠2	
		5										

Question	Answer	Marks	Guidance
9(ii)	State or imply midpoint has position vector $2\mathbf{i} + \frac{3}{2}\mathbf{j}$	B1	
	Substitute in $2x - y + 2z = d$ and find d	M1	Correct use of <i>their</i> direction for <i>AB</i> and <i>their</i> midpoint
	Obtain plane equation $4x - 2y + 4z = 5$	A1	or equivalent e.g. $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} = \frac{5}{2}$
	Substitute components of <i>l</i> in plane equation and solve for μ	M1	Correct use of their plane equation.
	Obtain $\mu = -\frac{1}{2}$ and position vector $\frac{3}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$ for the point <i>P</i>	A1	Final answer Accept coordinates in place of position vector
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
10(i)	State correct expansion of $\sin(3x+x)$ or $\sin(3x-x)$	B1	B0 If their formula retains \pm in the middle
	Substitute expansions in $\frac{1}{2}(\sin 4x + \sin 2x)$	M1	
	Obtain $\sin 3x \cos x = \frac{1}{2} (\sin 4x + \sin 2x)$ correctly	A1	Must see the $\sin 4x$ and $\sin 2x$ or reference to LHS and RHS for A1 AG
		3	
10(ii)	Integrate and obtain $-\frac{1}{8}\cos 4x - \frac{1}{4}\cos 2x$	B1 B1	
	Substitute limits $x = 0$ and $x = \frac{1}{3}\pi$ correctly	M1	In their expression
	Obtain answer $\frac{9}{16}$	A1	From correct working seen.
		4	

Question	Answer	Marks	Guidance
10(iii)	State correct derivative $2\cos 4x + \cos 2x$	B1	
	Using correct double angle formula, express derivative in terms of $\cos 2x$ and equate the result to zero	M1	
	$Obtain 4\cos^2 2x + \cos 2x - 2 = 0$	A1	
	Solve for x or 2x (could be labelled x) $\left(\cos 2x = \frac{-1 \pm \sqrt{33}}{8}\right)$	M1	Must see working if solving an incorrect quadratic The roots of the correct quadratic are -0.843 and 0.593 Need to get as far as $x =$ The wrong value of x is 0.468 and can imply M1 if correct quadratic seen Could be working from a quartic in $\cos x$: $16\cos^4 x - 14\cos^2 x + 1 = 0$
	Obtain answer $x = 1.29$ only	A1	
		5	