

Question	Answer	Mark	Guidance
1	PE loss = $0.6 \times 10 \times 8$ [= 48]	B1	
	KE gain = $\frac{1}{2}$ (0.6) 10 ² [= 30]	B1	
	WD against Res = 48 – 30 = 18 J	B1	
	Total:	3	
2(i)	$R = 0.8g \cos 10 [= 7.88]$	B1	
	$F = 0.4 \times 8 \cos 10 [= 3.15]$	M1	Use $F = \mu R$
	$-8\sin 10 - 3.2\cos 10 = 0.8a$	M1	Newton 2 along the plane
	$a = -5.68 \text{ ms}^{-2}$	A1	
	Total:	4	
2(ii)	$0 = 12^2 - 2 \times 5.68 \times s$	M1	Using $v^2 = u^2 + 2as$
	$s = 144/(2 \times 5.68) = 12.7 \text{ m}$	A1	
	Total:	2	

Question	Answer	Mark	Guidance
3	EITHER:	(M1	Resolve horizontally and/or vertically at the 25 N weight
	$A\cos 30 + B\cos 40 = 25$	A1	
	$A\sin 30 = B\sin 40$	A1	
		M1	Solve for A and/or B
	<i>A</i> = 17.1	A1	
	B = 13.3	A1)	
	OR:	(M1	Attempt Lami's theorem
	$\frac{25}{\sin 70} = \frac{A}{\sin 140} = \frac{B}{\sin 150}$	A1	One correct equation
		A1	A second correct equation
		M1	Solve for A and/or B
	<i>A</i> = 17.1	A1	
	<i>B</i> = 13.3	A1)	
	Total:	6	

Question	Answer	Mark	Guidance
4(i)		M1	Attempt KE and/or PE with correct dimensions
	KE gain = $\frac{1}{2} \times 800 \times (14^2 - 8^2) = 52800 \text{ J}$	A1	
	PE gain = $800 \times 10 \times 120 \times 0.15 = 144000 \text{ J}$	A1	
	Total:	3	
4(ii)	WD by engine = 32000×12	B1	
	$32000 \times 12 =$ 144000 + 52800 + WD against F	M1	Work/Energy equation 4 terms
	WD against $F = 187200$ J	A1	WD = 187000 to 3sf
	Total:	3	
5(i)	$[122 = 202 - 2a \times AB62 = 122 - 2a \times BC]$	M1	Use $v^2 = u^2 + 2(-a)s$ for <i>AB</i> or <i>BC</i> where <i>a</i> is the deceleration
	AB = 128/a	A1	
	BC = 54/a	A1	
	AB: BC = 64:27	A1	Allow equivalent unsimplified ratio
	Total:	4	

Question	Answer	Mark	Guidance
5(ii)	$0 = 20^2 - 2a \times 80 \rightarrow a = 2.5$	M1	Use $v^2 = u^2 + 2(-a)AD$ to find <i>a</i>
	BC = 54/2.5	M1	Use <i>a</i> to find <i>BC</i>
	BC = 21.6 m	A1	
	Total:	3	
6(i)	[q + r = 4 and 2q + 4r = 4]	M1	Use $v = 4$ at $t = 1$ and $t = 2$
	$q = 6$ and $r = -2$ so $v = 6t - 2t^2$	A1	
	a = 6 - 4t	M1	Differentiation used for <i>a</i>
	At $t = 0.5$, $a = 4$	A1	AG
	Total:	4	
6(ii)	$v = 6t - 2t^2 = 0$	M1	Set $v = 0$ and solve for t
	t = 0 and t = 3	A1	
	Total:	2	

Question	Answer	Mark	Guidance
6(iii)	EITHER: $s = \int (6t - 2t^2) dt$	(M1	Attempt to integrate v to find s
	$s = 3t^2 - \frac{2}{3}t^3 + C$	A1	
	$0 = 3 \times 3^2 - \frac{2}{3} \times 3^3 + C$	M1	Use $s = 0$ when $t = 3$ to find C
	C = -9 so distance = 9 m	A1)	Valid argument
	$OR:$ $s = \int_{0}^{3} (6t - 2t^{2}) dt$	(M1	Attempt integration with limits
	$\left[3t^2 - \frac{2}{3}t^3\right]_0^3$	A1	Correct integration and correct limits but no evaluation
	[27 - 18 = 9]	M1	Evaluation of integral between limits
	Distance from O at $t = 0$ is 9 m	A1)	With explanation
	Total:	4	

Question	Answer	Mark	Guidance
7(i)	$[T - 0.8g \sin 30 = 0.8a$ 1.2g sin 60 - T = 1.2a 1.2g sin 60 - 0.8g sin 30 = 2a]	M1	Resolve along the plane for either <i>A</i> or for <i>B</i> or for the system
	For A $T-4=0.8a$	A1	
	For <i>B</i> $6\sqrt{3} - T = 10.4 - T = 1.2a$	A1	System equation is $6\sqrt{3} - 4 = 6.4 = 2a$
		M1	Solve for <i>a</i> or <i>T</i>
	$a = 3\sqrt{3} - 2 = 3.20 \text{ ms}^{-2}$	A1	
	$T = \frac{12}{5} \left(1 + \sqrt{3} \right) = 6.56 \text{ N}$	A1	
	Total:	6	

97**May/June 2017**41

Question	Answer	Mark	Guidance
7(ii)	$R_{A} = 0.8g \cos 30 = 4\sqrt{3}$ $R_{B} = 1.2g \cos 60 = 6$	B1	For either R_A or R_B
	$F_A = 4\sqrt{3} \ \mu \ \text{and} \ F_B = 6\mu$	M1	Either F_A or F_B used
		M1	Resolve parallel to the plane for both particles <i>A</i> and <i>B</i> or system
	$ \begin{array}{l} 12 \sin 60 - 6\mu - T = 0 \\ \text{or} \\ T - 8 \sin 30 - 4\sqrt{3} \ \mu = 0 \end{array} $	A1	System equation is $12 \sin 60 - 8 \sin 30 - 6\mu - 4\sqrt{3} \mu = 0$
		M1	Eliminate T and/or find μ
	$\mu = (6\sqrt{3} - 4) / (6 + 4\sqrt{3})$ = 0.494	A1	
	Total:	6	