	FUBLISHED				
Question	Answer	Marks	Guidance		
1	7C1×2 ⁶ × $a(x)$, 7C2×2 ⁵ × $[a(x)]^2$	B1 B1	SOI Can be part of expansion. Condone ax^2 only if followed by a^2 .		
			ALT $2^{7}[1 + ax/2]^{7} \rightarrow 7C1[a(x)/2] = 7C2[a(x)/2]^{2}$		
	$a = \frac{7 \times 2^6}{21 \times 2^5} = \frac{2}{3}$	B1	Ignore extra soln $a = 0$. Allow $a = 0.667$. Do not allow an extra x in the answer		
	Total:	3			

Question	Answer	Marks	Guidance
2(i)	$S = \frac{r^2 - 3r + 2}{1 - r}$	M1	
	$S = \frac{(r-1)(r-2)}{1-r} = \frac{-(1-r)(r-2)}{1-r} = 2 - r \text{ OR}$ $\frac{(1-r)(2-r)}{1-r} = 2 - r \text{ OE}$	A1	AG Factors must be shown. Expressions requiring minus sign taken out must be shown
	Total:	2	
2(ii)	Single range $1 < S < 3$ or $(1, 3)$	B2	Accept $1 < 2 - r < 3$. Correct range but with $S = 2$ omitted scores SR B1 $1 \le S \le 3$ scores SR B1 . [$S > 1$ and $S < 3$] scores SR B1 .
	Total:	2	

Question	Answer	Marks	Guidance
3	EITHER Elim <i>y</i> to form 3-term quad eqn in $x^{1/3}$ (or <i>u</i> or <i>y</i> or even <i>x</i>)	(M1	Expect $x^{2/3} - x^{1/3} - 2(=0)$ or $u^2 - u - 2(=0)$ etc.
	$x^{1/3}$ (or <i>u</i> or <i>y</i> or <i>x</i>) = 2, -1	*A1	Both required. But $\underline{x} = 2,-1$ and not then cubed or cube rooted scores A0
	Cube solution(s)	DM1	Expect $x = 8, -1$. Both required
	(8, 3), (-1,0)	A1)	
	OR Elim <i>x</i> to form quadratic equation in <i>y</i>	(M1	Expect $y + 1 = (y - 1)^2$
	$y^2 - 3y = 0$	*A1	
	Attempt solution	DM1	Expect $y = 3, 0$
	(8, 3), (-1,0)	A1)	
	Total:	4	

	FUBLISHED				
Question	Answer	Marks	Guidance		
4(i)	$\overrightarrow{OB} - \overrightarrow{OA} \left(= \overrightarrow{AB} \right) = \begin{pmatrix} 5\\4\\-3 \end{pmatrix} - \begin{pmatrix} 5\\1\\3 \end{pmatrix} = \begin{pmatrix} 0\\3\\-6 \end{pmatrix}$	B1			
	$\overrightarrow{OP} = \begin{pmatrix} 5\\1\\3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0\\3\\-6 \end{pmatrix} = \begin{pmatrix} 5\\2\\1 \end{pmatrix}$	M1 A1	If \overrightarrow{OP} not scored in (i) can score SR B1 if seen correct in (ii). Other equivalent methods possible		
	Total:	3			
4(ii)	Distance $OP = \sqrt{5^2 + 2^2 + 1^2} = \sqrt{30}$ or 5.48	B1 FT	FT on <i>their</i> \overrightarrow{OP} from (i)		
	Total:	1			
4(iii)	Attempt $\overrightarrow{AB}.\overrightarrow{OP}$. Can score as part of $\overrightarrow{AB}.\overrightarrow{OP} = (AB)(OP)\cos\theta$ Rare ALT: Pythagoras $\left \overrightarrow{OP}\right ^2 + \left \overrightarrow{AP}\right ^2 = 5 + 30 = \left \overrightarrow{OA}\right ^2$	M1	Allow any combination of \overrightarrow{AB} . \overrightarrow{PO} etc. and also if \overrightarrow{AP} or \overrightarrow{PB} used instead of \overrightarrow{AB} giving 2–2 = 0 & 4–4 = 0 respectively. Allow notation × instead of .		
	(0+6-6) = 0 hence perpendicular. (Accept 90°)	A1 FT	If result not zero then 'Not perpendicular' can score A1FT if value is 'correct' for <i>their</i> values of $\overrightarrow{AB}, \overrightarrow{OP}$ etc. from (i).		
	Total:	2			

	FUBLISTIED				
Question	Answer	Marks	Guidance		
5(i)	$\frac{2\sin\theta + \cos\theta}{\sin\theta + \cos\theta} = \frac{2\sin\theta}{\cos\theta}$	M1	Replace $\tan \theta$ by $\sin \theta / \cos \theta$		
	$2\sin\theta\cos\theta + \cos^2\theta = 2\sin^2\theta + 2\sin\theta\cos\theta \Longrightarrow c^2 = 2s^2$	M1 A1	Mult by $c(s + c)$ or making this a common denom For A1 simplification to AG without error or omission must be seen.		
	Total:	3			
5(ii)	$\tan^2\theta = 1/2$ or $\cos^2\theta = 2/3$ or $\sin^2\theta = 1/3$	B1	Use $\tan \theta = s / c$ or $c^2 + s^2 = 1$ and simplify to one of these results		
	$\theta = 35.3^{\circ} \text{ or } 144.7^{\circ}$	B1 B1 FT	FT for $180 - \text{other solution}$. SR B1 for radians 0.615 , 2.53 (0.196π , 0.804π) Extra solutions in range amongst solutions of which 2 are correct gets B1B0		
	Total:	3			

	POBLISHED			
Question	Answer	Marks	Guidance	
6	Gradient of normal is $-1/3 \rightarrow$ gradient of tangent is 3 SOI	B1 B1 FT	FT from <i>their</i> gradient of normal.	
	dy/dx = 2x - 5 = 3	M1	Differentiate and set = <i>their</i> 3 (numerical).	
	x = 4	*A1		
	Sub $x = 4$ into line $\rightarrow y = 7$ & sub <i>their</i> (4, 7) into curve	DM1	OR sub $x = 4$ into curve $\rightarrow y = k - 4$ and sub <i>their</i> (4, $k - 4$) into line OR other valid methods deriving a linear equation in k (e.g. equating curve with either normal or tangent and sub $x = 4$).	
	<i>k</i> = 11	A1		
	Total:	6		

	PUBLISHED				
Question	Answer	Marks	Guidance		
7(i)	$\sin ABC = 8/10 \rightarrow ABC = 0.927(3)$	B1	Or $\cos = 6/10$ or $\tan = 8/6$. Accept 0.295π .		
	Total:	1			
7(ii)	$AB = 6$ (Pythagoras) $\rightarrow \Delta BCD = 8 \times 6 = 48.0$	M1A1	OR $8 \times 10 \sin 0.6435$ or $\frac{1}{2} \times 10 \times 10 \sin((2) \times 0.927) = 48.24$ or 40 or 80 gets M1A0		
	Area sector $BCD = \frac{1}{2} \times 10^2 \times (2) \times their 0.9273$	*M1	Expect 92.7(3). 46.4 gets M1		
	Area segment = $92.7(3) - 48$	*A1	Expect 44.7(3). Might not appear until final calculation.		
	Area semi-circle – segment = $\frac{1}{2} \times \pi \times 8^2 - their(92.7 - 48)$	DM1	Dep. on previous M1A1 OR $\pi \times 8^2 - (\frac{1}{2} \times \pi \times 8^2 + their 44.7)$.		
	Shaded area = $55.8 - 56.0$	A1			
	Total:	6			

Question	Answer	PUBLISHE	Guidance
Question	Allswei	IVIAI KS	Guidance
8(i)	(b-1)/(a+1) = 2	M1	OR Equation of AP is $y-1=2(x+1) \rightarrow y=2x+3$
	b = 2a + 3 CAO	A1	Sub $x = a$, $y = b \rightarrow b = 2a + 3$
	Total:	2	
8(ii)	$AB^2 = 11^2 + 2^2 = 125$ oe	B1	Accept $AB = \sqrt{125}$
	$(a+1)^{2} + (b-1)^{2} = 125$	B1 FT	FT on <i>their</i> 125.
	$(a+1)^{2} + (2a+2)^{2} = 125$	M1	Sub from part (i) \rightarrow quadratic eqn in <i>a</i> (or possibly in $b \rightarrow b^2 - 2b - 99 = 0$)
	$(5)(a^2+2a-24)=0 \rightarrow eg(a-4)(a+6)=0$	M1	Simplify and attempt to solve
	a = 4 or -6	A1	
	<i>b</i> = 11 or -9	A1	OR (4, 11), (-6, -9) If A0A0 , SR1 for either (4, 11) or (-6, -9)
	Total:	6	

	PUBLISHED				
Question	Answer	Marks	Guidance		
9(i)	$\left(3x-1\right)^2+5$	B1B1B1	First 2 marks dependent on correct $(ax+b)^2$ form. OR $a=3$, $b=-1$, $c=5$ e.g. from equating coefs		
	Total:	3			
9(ii)	Smallest value of p is 1/3 seen. (Independent of (i))	B1	Allow $p \ge 1/3$ or $p = 1/3$ or $1/3$ seen. But not in terms of x.		
	Total:	1			
9(iii)	$y = (3x-1)^2 + 5 \Longrightarrow 3x - 1 = (\pm)\sqrt{y-5}$	B1 FT	OR $y=9\left(x-\frac{1}{3}\right)^2+5 \Rightarrow \left(y-5\right)/9=\left(x-\frac{1}{3}\right)^2$ (Fresh start)		
	$x = (\pm) \frac{1}{3} \sqrt{y-5} + \frac{1}{3} \text{ OE}$	B1 FT	Both starts require 2 operations for each mark. FT for <i>their</i> values from part (i)		
	$f^{-1}(x) = \frac{1}{3}\sqrt{x-5} + \frac{1}{3}$ OE domain is $x \ge their5$	B1B1 FT	Must be a function of x and \pm removed. Domain must be in terms of x. Note: $\sqrt{y-5}$ expressed as $\sqrt{y} - \sqrt{5}$ scores Max B0B0B0B1 [See below for general instructions for different starts]		
	Total:	4			
9(iv)	q < 5 CAO	B1			
	Total:	1			
Alt 9(iii)	For start $(ax - b)^2 + c$ or $a(x - b)^2 + c$ $(a \ne 0)$ ft for their <i>a</i> , <i>b</i> , <i>c</i> For start $(x - b)^2 + c$ ft but award only B1 for 3 correct operations For start $a(bx - c)^2 + d$ ft but award B1 for first2 operations correct and B1 for the next 3 operations correct				

· · · · · · · · · · · · · · · · · · ·	PUBLISHED				
Question	Answer	Marks	Guidance		
10(a)(i)	Attempt to integrate $V = (\pi) \int (y+1) dy$	M1	Use of <i>h</i> in integral e.g. $\int (h+1) = \frac{1}{2}h^2 + h$ is M0 . Use of $\int y^2 dx$ is M0		
	$= \left(\pi\right) \left[\frac{y^2}{2} + y\right]$	A1			
	$=\pi\left[\frac{h^2}{2}+h ight]$	A1	AG. Must be from clear use of limits $0 \rightarrow h$ somewhere.		
	Total:	3			
10(ii)	$\int (y+1)^{1/2} dy$ ALT $6 - \int (x^2 - 1) dx$	M1	Correct variable and attempt to integrate		
	$\frac{2}{3}(y+1)^{3/2}$ oe ALT $6-(\frac{1}{3}x^3-x)$ CAO	*A1	Result of integration must be shown		
	$\frac{2}{3}[8-1]$ ALT $6-[(\frac{8}{3}-1)-(\frac{1}{3}-1)]$	DM1	Calculation seen with limits $0 \rightarrow 3$ for <i>y</i> . For ALT, limits are $1 \rightarrow 2$ and rectangle.		
	14/3 ALT $6 - 4/3 = 14/3$	A1	16/3 from $\frac{2}{3} \times 8$ gets DM1A0 provided work is correct up to applying limits.		
	Total:	4			

Cambridge International AS/A Level – Mark Scheme PUBLISHED

9709_s17_ms_13 May/June 2017

Orrestian		Marila	
Question	Answer	Marks	Guidance
10(b)	Clear attempt to differentiate wrt <i>h</i>	M1	Expect $\frac{\mathrm{d}V}{\mathrm{d}h} = \pi (h+1)$. Allow $h + 1$. Allow h .
	Derivative = 4π SOI	*A1	
	$\frac{2}{their \text{ derivative}}$. Can be in terms of <i>h</i>	DM1	
	$\frac{2}{4\pi} \operatorname{or} \frac{1}{2\pi} \text{or } 0.159$	A1	
	Total:	4	

		D	
Question	Answer	Marks	Guidance
11(i)	f '(x) = [(4x+1) ^{1/2} ÷ ¹ / ₂] [÷4] (+c)	B1 B1	Expect $\frac{1}{2}(4x+1)^{1/2}$ (+c)
	$f'(2)=0 \implies \frac{3}{2}+c=0 \implies c=-\frac{3}{2}$ (Sufficient)	B1 FT	Expect $\frac{1}{2}(4x+1)^{1/2} - \frac{3}{2}$. FT on <i>their</i> $f'(x) = k(4x+1)^{1/2} + c$. (i.e. $c = -3k$)
	Total:	3	
11(ii)	f''(0) = 1 SOI	B1	
	$f'(0) = 1/2 - 1\frac{1}{2} = -1 \text{ SOI}$	B1 FT	Substitute $x = 0$ into <i>their</i> f'(x) but must not involve c otherwise B0B0
	f(0) = -3	B1 FT	FT for 3 terms in AP. FT for 3rd B1 dep on 1st B1 . Award marks for the AP method only.
	Total:	3	
11(iii)	$f(x) = \left[\frac{1}{2}(4x+1)^{3/2} \div 3/2 \div 4\right] - \left[\frac{1}{2}x\right](+k)$	B1 FT B1 FT	Expect $(1/12)(4x+1)^{3/2} - 1\frac{1}{2}x (+k)$. FT from <i>their</i> f'(x) but c numerical.
	$-3 = 1/12 - 0 + k \implies k = -37/12$ CAO	M1A1	Sub $x = 0, y = their f(0)$ into their $f(x)$. Dep on $cx \& k$ present (c numerical)
	Minimum value = $f(2) = \frac{27}{12} - 3 - \frac{37}{12} = -\frac{23}{6}$ or -3.83	A1	
	Total:	5	