Page 4 **Mark Scheme** Syllabus Paper Cambridge International AS/A Level – May/June 2015 9709 41 For resolving forces vertically 1 (i) $[20 + 25\sin\theta = 2.7g]$ M1 2 $\sin\theta = 0.28$ A1 AG $[25 \times 5 \times \sqrt{(1-0.28^2)}]$ (ii) M1 For using WD = $Fd\cos\theta$ Work done is 120 J A1 2 2 For resolving components of *F* in *x* and *y* M1 directions $F_x = F\cos\theta = 25 \times 0.8 = 20,$ $F_v = F \sin\theta = 63 - 25 \times 0.6 = 48$ A1 For using $F = \sqrt{(F_x^2 + F_y^2)}$ <u>or</u> for using $\tan \theta = F_v \div F_x$ M1 $F = 52 \text{ N} \text{ or } \tan \theta = 2.4$ A1 $\tan\theta = 2.4 \text{ or } F = 52 \text{ N}$ **B**1 5 3 B1 Allow $F = 0.25(6.1\cos 10.4)$ $F = 0.25 \left(6.1 \times \frac{60}{61} \right) [= 1.5]$ For using Newton's 2nd law $[W\sin\alpha - F = ma]$ M1 $6.1 \times \left(\frac{11}{61}\right) - 0.25 \left(6.1 \times \frac{60}{61}\right)$ $a = -\frac{40}{61} = -0.656$ = 0.61aor A1 $6.1 \sin 10.4 - 0.25 \times 6.1 \cos 10.4$ The value of *a* may be seen but is not a required answer. = 0.61aFor using $0 = v_A^2 + 2as$ M1 Distance is $4 \div \left(2 \times \frac{40}{61}\right)$ A1 5 = 3.05 m Alternative method $F = 0.25 \left(6.1 \times \frac{60}{61} \right) \ [= 1.5]$ **B**1 Allow $F = 0.25(6.1 \cos 10.4)$ KE loss = $\frac{1}{2} \times 0.61 \times 2^2$ **B**1 Finding loss of KE PE loss = $0.61 \times 10 \times x \left(\frac{11}{61}\right)$ Finding loss of PE **B**1 [1.5x = 1.22 + 1.1x]Using WD against F = KE loss + PE lossM1

9709 s15 ms 41

A1

5

 $0.4x = 1.22 \rightarrow \text{distance} = 3.05 \,\text{m}$

Dago	5 Marte	Schome			9709_s	<u>15 ms</u>
Faye	Cambridge International	Syllabus 9709	Paper			
					0100	
4 (i)		M1		For using KE gain = PE loss = mg	$\frac{1}{2}mv_B^2 \text{ or }$ $\times AB\sin\theta$	
	For KE gain = 4032×10^3 or PE loss = $42 \times 10^6 \sin\theta$	A1				
	PE loss = $42 \times 10^6 \sin\theta$ or KE gain = 4032×10^3	B1	3			
(ii)		M1		For using WD by DF + WD by resistance	F = KE gain -	PE loss
	$5000 = 4032 - 42000\sin\theta + 3360$	A1√				
	$\theta = 3.3^{\circ}$	A1	3			
5		M1		For using DF = $\frac{P}{v}$ f	or DF up and	down
		M1		For applying Newtor down	n's 2 nd law up	and
	$\frac{P}{3} - R - 84g \times 0.1 = 84 \times 1.25$	A1				
	$\frac{P}{10} - R + 84g \times 0.1 = 84 \times 1.25$	A1				
	$\left[P\left(\frac{1}{3} - \frac{1}{10}\right) - 168 = 0\right]$	M1		For solving equation	s for P	
	<i>P</i> = 720	A1				
	$\left[R = \frac{720}{3} - 84 - 105\right]$	M1		For substitution for <i>I</i>	^P to obtain <i>R</i>	
	<i>R</i> = 51	A1	8			
(i)		M1		For integrating $a(t)$ to	o find $v(t)$	
	$v(t) = 0.05t - 0.0001t^2 (+0)$	A1				
	$v(200) = 10 - 4 = 6 \text{ ms}^{-1}$	A1				
	v(500) = 25 - 25 = 0	A1	4			
(ii)		M1		For integrating $v(t)$ b 500 to obtain the dist	etween limits tance A travel	0 to s

					<u>9709</u> s	<u>15 ms</u>	
Page 6	Mark S	Syllabus	Paper				
	Cambridge International A	S/A Lev		ay/Julie 2015	9709	41	
	$\int_0^{500} \left(0.05t - 0.0001t^2 \right) dt$						
	$\left[\frac{0.05t^2}{2} - \frac{0.0001t^3}{3}\right]_0^{500}$	A1					
-	Distance = $0.025 \times 500^2 - 0.0001 \times 500^3 \div 3 = 2083 \text{ m}$			Accept 2080			
		M1		For using area proper $s = \frac{1}{2} (u + v)t$ or $s =$ to find distance travel	ty of graph of $ut + \frac{1}{2}at^2$ led by <i>B</i>	r	
-	Distance = $\frac{1}{2} \times 6 \times 500 = 1500 \mathrm{m}$ or						
	distance = $\frac{1}{2}(0+6) \times 200 + \frac{1}{2}(6+0) \times 300$						
	or distance = $\left(0 + \frac{1}{2}0.03 \times 200^2\right)$						
	+ $\left(6 \times 300 + \frac{1}{2}(-0.02)300^2\right)$	A1					
	Distance between A and B is 2083 - 1500 = 583 m	B1√	6	Can only be scored if by A has been found u	f distance travelled using integration		
(i)		M1		For using Newton's 2 particles	nd law for bo	th	
	$T - 0.2 \times 3 = 0.3a$ and $7 - T = 0.7a$	A1					
	Acceleration = 6.4 ms^{-2}	A1					
	$[v = 0 + 6.4 \times 0.25]$	M1		For using $v = 0 + at$ to string breaks	o find speed v	when	
	$v = 1.6 \text{ ms}^{-1}$	A1					
	$\left[\text{Distance} = 0 + \frac{1}{2} 6.4 \times 0.25^2\right]$	M1		For using $s = ut + \frac{1}{2}$ moved before break	at^2 to find dis	stance	
	Distance = 0.2 m	A1					
	$[v^2 = 1.6^2 + 2g \times (0.5 - 0.2)]$	M1		For using $v^2 = u^2 + 2g$ <i>B</i> hits floor	s to find spee	ed when	
	Speed is 2.93 ms ⁻¹	A1	9				

					<u>9709</u> s	<u>15 ms 4</u>	
Page	e 7 Mark Scheme					Paper	
	Cambridge International A	lge International AS/A Level – May/June 2015				41	
				-			
(ii)		M1		For finding distance travelled by <i>A</i> after break from $v^2 = u^2 + 2as$			
	Distance travelled after break = $(0 - 1.6^2) \div (2 \times -2) = 0.64$	A1		For A, $F = 0.2 \times 3$ an - 0.2 × 3 = 0.3a so a	$= 0.2 \times 3 \text{ and so}$ $= 0.3a \text{ so } a = -2$		
	Total distance travelled = $0.2 + 0.64 = 0.84$	B1	3	Distance = 0.84 m			
	Alternative method for 7(ii)						
(ii)	$T = 2.52$, $F = 0.2 \times 3$ WD by $T = 2.52 \times 0.2$ WD by $F = 0.2 \times 3 \times d$	B1		For stating WD by <i>T</i> on <i>A</i> and W	D by F		
	$[0.6d = 2.52 \times 0.2]$	M1		Using WD by $F = W$ (No change in KE or	D by T PE for A)		
	WD by $T =$ WD by $F \rightarrow d = 0.84$	A1	3	Distance = 0.84 m			