					9709_s14_ms_43		
Page 4		Mark Scho GCE AS/A LEVEL –	SyllabusPaper4970943				
			viay/Juli	C 201-	4 5705 45		
1 (i)	i) $[N + \text{component of } X = \text{Weight of } B]$ Normal component is $(70 - X\cos 15^\circ) N$		M1		For resolving forces acting on the block vertically (3 terms required)		
			A1	[2]			
(ii)	F = Xsin1	B1					
	[Xsin15° =	M1		For using $F = \mu R$			
	Value of X is 43.4		A1	[3]			
2					For using Newton's 2 nd law		
	DF - 600	$-1250 \times 0.02g = 1250 \times 0.5$	A1				
			M1		For using $DF = 23000/v$		
	v = $23000 \div (625 + 600 + 250)$ A1ft Speed of car is $15.6 \mathrm{ms}^{-1}$ A1			ft error in one term for DF above (1 st A mark)			
			A1	[5]			
		Altern	ative Me	thod			
	$WD = 1250 \times 0.5s + 1250g \times 0.02s + 600s$		M1		For using WD by driving force = KE gain + PE gain + WD against resistance		
			A1				
		M1		For using WD by driving force = $DF \times s$ and $DF=23000/v$			
	v = 23000	A1ft		ft error in one term for WD above (1 st A mark)			
	Speed of o	car is $15.6 \mathrm{ms}^{-1}$	A1	[5]			
3			M1		For resolving forces acting on <i>P</i> horizontally.		
	$0.8T_1 + 12$	$T_2/13 = 2.24$	A1				
			M1		For resolving forces acting on <i>P</i> vertically.		
	$0.6T_1 - 5T_2$	$\Gamma_2/13 = 1.4$	A1				
			M1		For solving for T_1 and T_2		
	$T_1 = 2.5 \underline{a}$	<u>nd</u> $T_2 = 0.26$	A1	[6]			
					SR for using Lami's Rule for T_1, T_2 and 2.24 N (weight missing) (max 3/6) $T_1/sin157.38 = 2.24/sin59.49$ B1 $T_2/sin143.13 = 2.24/sin59.49$ B1 $T_1 = 1(.00)$ and $T_2 = 1.56$ B1		

D	200 5	Mark Sch	000		<u>9709 s14 ms 43</u> Syllabus Paper
Page 5		GCE AS/A LEVEL –			
	-				· · · · · · · ·
4 (i)	PE loss =	0.4g × 5 J = 20 J	B1		
	Initial KE	$_{up} = 0.4g \times 5 - 12.8 = 7.2 J$	B1		
	[0.4gh = 2g - 12.8]		M1		Uses PE gain = KE loss to form equation in h
	Height rea	ached is 1.8 m	A1	[4]	AG
(ii)	$5 = 0 + \frac{1}{2}$	gt_{down}^2 ($t_{down} = 1$)	B1		
	$0=6-gt_0$	up or $1.8 = \frac{1}{2} \operatorname{gt_{up}}^2(t_{up} = 0.6)$	B1		
	Total time	e is 1.6 s	B1	[3]	
		First Alte	rnative fo	r part	(i)
	$v^2 = 2 \times 1$	$0 \times 5 \rightarrow (v = 10)$	B1		
	KE loss =	$\frac{1}{2} 0.4(10^2 - {v_{up}}^2) = 12.8$	B1		
	$[v_{up} = 60,$	$0 = 6^2 - 2gh$]	M1		Uses $v^2 = u^2 - 2gs$ to form equation in h
	Height reached is 1.8 m		A1	[4]	AG
		Second Alt	ernative f	or par	t (i)
	0.4gh = 12.8				Uses PE gain = KE loss
	h = 3.2 m		A1		
	[Height re	eached = $5 - 12.8/0.4$ g]	M1		Uses height reached = 5 – 'height not reached'
	Height reached is 1.8 m		A1	[4]	AG
		Third Alte	ernative fo	or part	
	$\frac{1}{2} \times 0.4 v^2 = 12.8$ (v=8) and		M1		Uses KE loss = 12.8 and $v^2=u^2+2gs$
	$\begin{bmatrix} 2\\ 8^2 = 0^2 + \end{bmatrix}$				
	h = 3.2 m		A1		
	[Height re	eached = 5 - 3.2]	M1		Uses height reached = 5 – 'height not reached'
	Height rea	ached is 1.8 m	A1	[4]	AG

D	2006	Mark Sche	mo		<u>9709_s14_ms_43</u> Syllabus Paper
Page 6 Mark Sche GCE AS/A LEVEL – M				e 2014	
5 (i)			M1		For using WD by driving force = Gain in
• (1)					PE + WD against resistance
	WD against resistance = $4500 \times 1200 - 16000g \times 18$		A1		
	WD against resistance = 2.52×10^6 J		A1	[3]	
	T	Alternative	Method	for par	rt (i)
	[R + 1600	$00g \times 18/1200 = 4500$]	M1		For resolving along the plane
	[WD=(45	$00 - 16000g \times 18/1200) \times 1200$]	M1		For using WD against resistance = Rs
	WD again	nst resistance = 2.52×10^6 J	A1	[3]	
(ii)	(ii) KE gain = $\frac{1}{2}$ 16000(21 ² - 9 ²) J		B1		
			M1		For using $F = (KE \text{ gain} + 2000 \times 2400) \div 2400$
	F = 76800	$000 \div 2400 = 3200$	A1	[3]	
					SR (max 1/3) for using $v^2=u^2+2as$ and Newton's 2^{nd} law $21^2 - 9^2 = 2a \times 2400$, $a = 0.075$ F $-2000 = 16000 \times 0.075$ F $= 3200$ B1
(iii)	$[P_A = (3200 + 1280) \times 9 \text{ and } P_B = (3200 - 1280) \times 21]$		M1		For using $P = Fv$ to find P_A and P_B
	$P_{\rm A} = P_{\rm B} = 40320 \ {\rm W}$		A1	[2]	
6 (i)	Velocity i	immediately before is $1.2 \mathrm{ms}^{-1}$	B1		
	Velocity i	immediately after is -1 ms^{-1}	B1	[2]	
(ii)			M1		For using distance OW = $\int v dt$ with limits 0 to 60 (W is wall) or For using distance WA = $-\int v dt$ with limits 60 to 100
	Distance 0.0005 ×	$OW = 0.025 \times 60^2 - 60^3 \div 3$	A1		
		$WA = 5 \times 100^{2} - 2.5 \times 100) - 60^{2} - 2.5 \times 60]$	A1		
	Distance	Distance is $54 + 20 = 74$ m			

					97() <u>9 s14 ms 4</u> 3
P	age 7	Mark Sche	Syllabus	Paper		
	GCE AS/A LEVEL – I			e 2014	4 9709	43
(iii)	$\begin{bmatrix} dv/dt = 0.0 \\ 0.0005t(10) \end{bmatrix}$	M1		For using v_{max} occurs when $dv/dt = 0$ of when t = the midpoint of the roots of t quadratic equation $v = 0$.		
	Maximum speed $(= 0.05 \times 50 - 0.0005 \times 50^2)$ is 1.25 ms^{-1} Plausible quadratic curve starting at (0,0), with max. at (50, 1.25) and terminating at (60, 1.2) Straight line segment from (60,-1) to (100,0)		A1			
			B1			
			B1	[4]		
7 (i)			M1		For applying Newton's 2 ⁿ	^d law to P or to Q
	For T – (40 0.49g – T =	$(0.160) \times 0.76g = 0.76a$ or = 0.49a	A1			
	$T - (40 \div 1)$	-T = 0.49a <u>or</u> $(60) \times 0.76g = 0.76a$ <u>or</u> $(00 \div 160) \times 0.76g =$ (6)a	B1			
		on is 2.4 ms^{-2} n is 3.72 N (3.724 exact)	A1	[4]		
(ii)	$[v^2 = 2 \times 2]$	$.4 \times 0.3$]	M1		For using $v^2 = 0 + 2as$	
	Speed is 1.	$20{\rm ms}^{-1}$	A1ft	[2]	ft a from (i) $(a \neq \pm g)$	
(iii)			M1		For using $v^2 = u^2 + 2as$ with $v = 0$ and $a = -(40 \div 16)$	0)g
		while Q is on the ground $(\times 0.3) \div 2(40g \div 160)$	A1ft		ft a from (i) and/or s = 30)
	Distance travelled is 0.588 m		A1	[3]		