Paper

Syllabus

		J -	GCE AS LEVEL – May/June 2014	9709	22	
1	(i)	<u>Either</u>	Square both sides to obtain linear equation		M1	
			Obtain $x = \frac{165}{30}$ or $\frac{33}{6}$ or $\frac{11}{2}$		A1	[2]
		<u>Or</u>	Solve linear equation in which, initially, signs of x are diffe	rent	M1	
		_	Obtain $x + 2 = -x + 13$ or equivalent and hence $\frac{11}{2}$ or equiv		A1	[2]
	(ii)	Apply lo	garithms and use power law		M1	
		Obtain y	$y \log 3 = \log \frac{11}{2}$ and hence $y = 1.55$		A1	[2]
2	Use	$\sin 2\theta = 2$	$2\sin\theta\cos\theta$		B1	
			otain form $c_1 \sin^2 \theta = c_2$ or equivalent		M1	
			one value of θ from equation of form $\sin \theta = k$		M1	
	Obt	ain 35.3° a	and 144.7°		A1	[4]
3	(a)	Integrate	to obtain form $k \sin(\frac{1}{3}x + 2)$ where $k \neq 4$		M1	
	()		$2\sin(\frac{1}{3}x+2) (+c)$		A1	[2]
			3 / / /			
	(b)	State or i	mply correct y-values 2, $\sqrt{20}$, $\sqrt{68}$, $\sqrt{148}$		B1	
			ect formula, or equivalent, with $h = 4$ and four y-values		M1	
		Obtain 79	9.2		A1	[3]
1	Obt	ain $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t}$	2_		B1	
7	Out	$\frac{d}{dt} = \frac{1}{t}$	t+1		Di	
	Obt	ain $\frac{\mathrm{d}y}{\mathrm{d}t} = 4$	$4e^t$		B1	
	Use	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$	$\frac{dx}{dt}$ with $t = 0$ to find gradient		M1	
		ain 2			A1	
	For	I from attempt to d				
	Obt	ain $2x - y$	y + 4 = 0 or equivalent of required form		M1 A1	[6]
5			$ \ln y = \ln K + px \ln 2 $		B1	
		ain at leas				
	1.8	$7 = \ln K + \frac{1}{2}$	1.35 p ln 2, 3.81 = ln K + 3.35 p ln 2, $p ln 2 = \frac{3.81 - 1.87}{3.35 - 1.35}$			
			3.30 1.30		B1	
		quivalents	n(s) to find one constant, dependent on previous B1		ы М1	
		ain $p=1.4$			A1	
		•	attempt value of K		DM1	
			0.5605 and hence $K = 1.75$		A1	[6]

Mark Scheme

Page 4

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9709	22

6	(i)	Substitute -2 and equate to zero, or divide and equate remainder to zero Obtain $a = 12$		[2]
	(ii)	Carry out division, or equivalent, at least as far as x^2 and x terms in quotient Obtain $x^2 - 2x + 6$ Calculate discriminant of a 3 term quadratic quotient (or equivalent) Obtain -20 (or equivalent) Conclude by referring to, or implying, root -2 and no root from quadratic factor	M1 A1 DM1 A1 A1	[5]
7	(i)	Integrate to obtain $ke^{3x} + mx^3$ Apply both limits to obtain $\frac{1}{6}e^{3a} + \frac{1}{3}a^3 - \frac{1}{6} = 10$ or equivalent Rearrange to form involving natural logarithm Obtain $a = \frac{1}{3}\ln(61 - 2a^3)$ with no errors seen (AG)	M1 A1 DM1 A1	[4]
	(ii)	Consider sign of $a - \frac{1}{3}\ln(61 - 2a^3)$ for 1.0 and 1.5 or equivalent Obtain -0.36 and 0.17 or equivalent and justify conclusion	M1 A1	[2]
	(iii)	Use iteration process correctly at least once Obtain final answer 1.343 Show sufficient iterations to 5 decimal places to justify answer or show a sign change in the interval (1.3425, 1.3435)	M1 A1	[3]
8	(i)	Differentiate using product rule Obtain $\sec^2 x \cos 2x - 2 \tan x \sin 2x$ Use $\cos 2x = 2 \cos^2 x - 1$ or $\sin 2x = 2 \sin x \cos x$ or both Express derivative in terms of $\sec x$ and $\cos x$ only Obtain $4 \cos^2 x - \sec^2 x - 2$ with no errors seen (AG)	M1 A1 B1 M1 A1	[5]
	(ii)	State $4\cos^4 x - 2\cos^2 x - 1 = 0$ Apply quadratic formula to a 3 term quadratic equation in terms of $\cos^2 x$ to find the value of $\cos^2 x$ Obtain or imply $\cos^2 x = \frac{1+\sqrt{5}}{4}$ or 0.809 Obtain 0.45	B1 least pos M1 A1	sitive