		970	9 s13 ms 42
Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	42

				1				
1	(i)	$[24 = \mu 30]$	M1		For using $R = W$, $F = T$ and $F = \mu R$			
		Coefficient is 0.8	A1	[2]				
	(ii)		M1		For resolving forces vertically and using $F = \mu R$			
		$F = 0.8(30 - 25\sin 30^{\circ})$ (=14)	A1					
		$[25 \cos 30^{\circ} - F = (30 \div g)a]$	M1		For using of Newton's 2nd law			
		Acceleration is 2.55 ms^{-2}	A1	[4]				
2	(i)		M1		For using work done by pulling force = increase in KE – decrease in PE + WD by resistance			
		$1150 = \frac{1}{2} 16 \times 10^2 - 16g(50 \times 0.05)$ + WD by resistance	A1					
		WD by resistance = 750 J	A1	[3]				
	(ii)	$1150 = \text{increase in KE} + 16 \text{ g}(50 \times 0.05) + 750$	M1		For WD by pulling force = KE gain + PE gain + WD by resistance			
		KE gain = $0 \rightarrow$ speed at top = speed at bottom	A1	[2]	AG			
3			M1		For resolving forces acting on P horizontally or vertically			
		$T_A \times (40/50) + T_B \times (40/104) = 21 \text{ or}$ $T_A \times (30/50) = T_B \times (96/104)$	A1					
		$T_A \times (30/50) = T_B \times (96/104)$ or $T_A \times (40/50) + T_B \times (40/104) = 21$	B1					
		Solve for T_A and T_B	M1		Solving for both			
		Tension in AP is 20 N and tension in BP is 13 N	A1	[5]	Both $T_A = 20$ and $T_B = 13$			
		First Alternative Marking Scheme						
3			M1		For using the sine rule in the triangle of forces			
		21/sin 75.75 (or 75.7 or 75.8) = $T_A/sin 67.4$ (or $T_B/sin 36.9$)	A1					
		21/sin 75.75 (or 75.7 or 75.8) = $T_B/sin 36.9$ (or $T_A/sin 67.4$) or $T_B/sin 36.9 = 20/sin 67.4$	B1					
		Solve for T_A and T_B	M1		Solving for both			

Page		5	Mark Schomo	9709 Syllabus	s13_ms_42		
raye J		je o	GCE AS/A LEVEL – Mav/Ju	9709	42		
			;;;;		- • r		
	Ter		Tension in AP is 20N and tension in BP is 13N		[5]	Both $T_A = 20$ and $T_B =$	13
			Second Alternative Ma	Schen	ne		
3				M1		For using Lami's Rule	;
		21/sin 10	$\begin{array}{l} 04.3 \ = T_{\rm A}/\sin 112.6 \\ (\text{or } T_{\rm B}/\sin 143.1) \end{array}$	A1			
		21/sin 10 or T_B /sir or T_A /sir	$\begin{array}{l} 04.3 &= T_{\rm B}/\sin 143.1 \\ ({\rm or} \ T_{\rm A}/\sin 112.6) \\ {\rm n} \ 143.1 &= 20/\sin 112.6 \\ {\rm n} \ 112.6 &= 13/\sin 143.1 \end{array}$	B1			
		Solve fo	r T _A and T _B	M1		For using the equation and $T_{\rm B}$	s to find T_A
		Tension	in AP is 20 N and tension in BP is 13 N	A1	[5]	Both $T_A = 20$ and $T_B =$	13
4	(i)	$a = (16 \div$	÷ 65)g	B1			
		$[8^2=2(1$	6 ÷ 65)gS]	M1		For using $v^2 = 2as$ to find	ind S
		S = 13		A1			
		$\begin{bmatrix} v^2 = 2(1) \\ or \ v^2 \div 8 \end{bmatrix}$	$6 \div 65)g \times 6.5$ $2^2 = \frac{1}{2}$	M1		For using $v^2 = 2a(\frac{1}{2}S)$ or $v^2 \alpha s$	
		Speed is	5.66 ms^{-1}	A1	[5]		
	(ii)	$[s = \frac{1}{2} a]$ or s ÷ 13	× $(64 \div 4a^2)$ B = $(\frac{1}{2})^2$]	M1 For using $8 = 0 + aT$ and $s = \frac{1}{2}a(T/2)^2$ or s α t ²		$(T/2)^2$	
	Distance		e is 3.25 m	A1	[2]		
			Alternative Markin	ng Sche	eme		
4	(i)	$[\frac{1}{2} \text{ m v}^2]$	= mgh h \div sin a	M1		For using KE gain = P	F loss
		$S = (8^2 \div$	$(-20) \div (16 \div 65)$	Δ1		Or AFE	1005
		S = 12	20) * (10 * 03)				
		3 - 13	(1/ 12 (1 (/ (5))				
		$\frac{1}{2}$ m V =	$= mg(\frac{1}{2} 13 \times (16/65))$	MI		Or AEF	
		Speed is	5.66 ms ⁻¹	Al	[5]		
	(ii)			M1		For eliminating at^2 from $s = \frac{1}{2}at^2$ and $13 = \frac{1}{2}a(2)$	m $(2t)^2$
		Distance	e is 3.25 m	A1	[2]		
5	(i)	Driving	force = 1000P/25	B1			

	P -		Marile Oak are			<u> </u>	970	9 <u>s13</u> ms <u>4</u> 2
Paç		je 6	Mark Scheme		Syllabus 9709	Paper 42		
			GCE AS/A LEVEL - May/Ju	ille 20	13		9709	42
				M1		For us	ing Newton's 2	2 nd law
		1000P/2	$5 - 600 = 1000 \times 0.2$	A1				
		P = 20		A1	[4]			
	(ii)			M1		For using Newton's 2^{nd} la $a = 0$		2 nd law with
		20000/v ₁	$_{\rm max} - 600 = 0$	Alft		ft for t	heir P in (i)	
		Steady speed is 33.3 ms ⁻¹			[3]			
6	(i)	For sketo consistin then - ^{ve} ,	ch of single valued, continuous graph og of 3 straight line segments with $+^{ve}$, then $+^{ve}$ slope	B1				
		Sketch a and v(8)	ppears to show $v(0) = 0$ > $v(26) > v(20)$	B1	[2]			
	(ii)	For shad trapezium from t = and 26	ing the triangle from $t = 0$ to $t = 8$, the n from $t = 8$ to $t = 20$ and the trapezium 20 to a value of t seen to be between 20	B1	[1]			
	(iii)			M1		For us	ing area proper	ty to find s(20)
		$s(20) = \frac{1}{2}$	$\frac{1}{2}(8 \times 8) + \frac{1}{2}(8 + 2) \times 12 (= 92)$	A1				
				M1	For using the gradient p find acceleration in 3^{rd}		t property to rd phase	
		a = (6.5	(-2)/6 (= 0.75)	A1				
		[s(t) = 92]	$2 + 2(t - 20) + 0.375(t - 20)^2$	M1				
		Displace 0.3	ment is $75t^2 - 13t + 202$ metres	A1	[6]	6]		
			Alternative Marking Scheme f	or fina	l 2 ma	rks of (Q6	
		v(t) = 2 s(t) = 0.3 92 = 0.3	+ 0.75(t - 20) $875t^{2} - 13t + A \text{ where}$ $75 \times 400 - 13 \times 20 + A]$	M1		For fin using s	ading $v(t)$, integrating $s(20) = 92$	grating and
		Displace	ment is $75t^2 - 13t + 202$ metres	A1				
6	(iii)	First Alternative Marking Scheme for part (iii) of Q6						
		a = (6.5	(-2)/(26-20) = 0.75	B1				
		v = 0.75	t (+ C1)	M1		Integra	ating	
		v = 0.75	t – 13	A1		Using or v(26	v(20) = 2 6) = 6.5	

	Dee	10.7	Mark Cabarra			9709_s13_ms_42		
Pag		je /	GCE AS/A LEVEL – Mav/Ju	9709 42				
						· · · · · · · · · · · · · · · · · · ·		
		s(20) = 9	22 or s(26) = 117.5	5 B1 Us		Using area in diagram		
		s = 0.375	$5t^2 - 13t (+C_2)$	M1		Integrating		
		s = 0.375	$5t^2 - 13t + 202$	A1	[6]	Using $s(20)$ or $s(26)$ to find $C_2 = 202$		
6	(iii)	Second .	Alternative Marking Scheme for part (iii) of Q	26	1		
		s = 0.375	5t2 - 13t + 202			Given		
		v = 0.751	t – 13	M1		Differentiating		
		a = 0.75		M1		Differentiating		
		a = (6.5–	(-2)/(26-20) = 0.75	B1		Check agreement from graph		
		v(20) = 0 v(26) = 0	0.75(20) - 13 = 2 or 0.75(26) - 13 = 6.5	B1		Check v agrees at a point between $t = 20$ and $t = 26$		
		Show s(2	20) = 92 or s(26) = 117.5	B1		Using area under graph		
		s(20) = 0 s(26) = 0	$0.375(20)^2 - 13(20) + 202 = 92$ or $0.375(26)^2 - 13(26) + 202 = 117.5$	B1		Check s agrees at a point between $t = 20$ and $t = 26$		
7	(i)			M1		For applying Newton's 2 nd law to A or B		
		T – 0.26 0.52g – 7	$g(16 \div 65) = 0.26a \text{ or}$ $\Gamma = 0.52a$	A1				
		For {0.52 T - 0.26 or 0.52g	2g - T = 0.52a or g(16 ÷ 65) = 0.26a} $- 0.26g(16 \div 65) = (0.52 + 0.26)a$	B1				
		Accelera	tion is 5.85 ms ^{-2}	B1				
		Tension	is 2.16 N	A1	[5]			
	(ii)	$[v^2 = 2 \times$	(76/13) × 0.6]	M1		For using $v^2 = 2as$		
		Speed is	2.65 ms^{-1}	A1				
		0 = 91.2/	/13 – 2(160/65)s	M1		For using $0 = v_B^2 - 2(g \sin \alpha)s$		
		S = 57/4	0 (= 1.425)	A1				
		[AP = 2.	5 - 0.6 - 1.425]	M1		For using $AP = 2.5 - 0.6 - s$		
		Distance	AP is 0.475 m	A1	[6]			