					9709_s13_ms_22		
	Page 4		Mark Scheme Syllabus		Paper		
			GCE AS LEVEL – May/June 2013	9709	22		
1	Inte	orate and o	obtain term of the form $k \ln(7 - 2x)$		M1		
•		te $y = -2 \ln(7 - 2x)(+c)$					
		luate c			A1 DM1		
	Obt	ain answer	$y = -2\ln(7 - 2x) + 2$		A1√^	[4]	
•	E:4	Ctata	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +				
2	<u>Eith</u>		e or imply non-modular inequality $(x - 8)^2 > (2x - 4)^2$, or esponding equation or pair of linear equations		M1		
			e reasonable solution attempt at a quadratic, or solve two lines	ar equations	M1 M1		
			in critical values 4 and -4	ur equations	A1		
			correct answer $-4 < x < 4$		A1		
	<u>Or</u>		in one critical value, e.g. $x = 4$, by solving a linear equation (c	or inequality) or			
			a graphical method or by inspection		B1		
			in the other critical value similarly		B2	F (3	
		State	e correct answer $-4 < x < 4$		B1	[4]	
3	(i)	Substitute	e x = -1 and equate to zero		M1		
-	(-)		swer $a = 7$		A1	[2]	
	(ii)		x = -3 and evaluate expression		M1		
		Obtain an	swer 18		A1	[2]	
4	(i)	State or in	$product{mply}(y+1) \log 5 = 3x \log 2$		M1		
-	(-)		this is of the form $ay = bx + c$ and thus a straight line, or equi	ivalent	Al	[2]	
	(ii)	State grad	lient is $\frac{3 \ln 2}{\ln 5}$, or equivalent, e.g. $3 \log_5 2$		B1		
	()						
		State (0, -	-1)		B1	[2]	
		dı	,				
5	(i)	State $3\frac{dy}{dx}$	as derivative of 3y, or equivalent		B1		
		u.	dv				
		State 4 <i>xy</i>	$+2x^2\frac{dy}{dx}$ as a derivative of $2x^2y$, or equivalent		B1		
		D 1	dy		2.61		
		Equate de	erivative of LHS to zero and solve for $\frac{dy}{dx}$		M1		
		Obtain gi	ven answer correctly		A1	[4]	
		0.1			2.61		
	(ii)		x = 2 into given equation and solve for y		M1		
		Obtain gr	adient = $\frac{12}{5}$ correctly		A1		
			5	du			
		Form equ	ation of the normal at their point, using negative recip of their	$\int \frac{\mathrm{d}y}{\mathrm{d}x}$	M1		
			ect equation of normal $5x + 12y + 2 = 0$ or equivalent	ux	A1	[4]	
			y = 2 - 0 or equivalent		$\mathbf{n}_{\mathbf{i}}$	[-]]	
6	(i)		ecognisable sketch of a relevant graph, e.g. $y = 3e^x$ or $y = 8 - 2$	2x	B1		
		Sketch a s	second relevant graph and justify the given statement		B1	[2]	

Pa	ge 5 Mark Scheme		Syllabus	9 <u>s13_ms_</u> 2 Paper		
		GCE AS LEVEL – N	lay/June 2013	9709	22	
(ii)	Consider sign of	$3e^x - 8 + 2x$ at $x = 0.7$ and	r = 0.8 or equivalent		M1	
(11)		ument correctly with appro-	· •		Al	[2]
		f(0.8) = 0.277 or equivale				L
	((,)	()				
(iii)) Show that given e	equation is equivalent to x	$=\ln\left(\frac{8-2x}{3}\right)$, or vice ve	rsa	B1	[1]
(iv)	Use the iterative t	formula correctly at least o	nce		M1	
(1)	Obtain final answ		Al			
	Show sufficient it					
	0.7	0.75				
	$x_0 = 0.7$	$x_0 = 0.75$	$x_0 = 0.8$			
	0.78846 0.76129	0.77319 0.76603	0.75769			
	0.76971	0.76825	0.76676			
	0.76711	0.76756	0.76802			
	0.76791		0.76763			
	0.76766					
	or show there is a	sign change in the interva	al (0.7675, 0.7685)		B1	[3
(a)	Obtain one term of	of form ke^{2x-1} with any nor	n-zero k		M1	
	Obtain correct int	A1				
	Substitute limits,	giving exact values			M1	
	Correct answer $\frac{1}{2}$	$-e^{3}+1$			A1	[4
	2					Γ.
(b)	Use product or qu	actions mile			M1*	
(0)	Obtain correct de		A1			
		to zero and solve for x			M1*	
					dep	
	Obtain $\tan 2x = 1$				A1	
	Obtain $x = \frac{\pi}{8}$				A1	[5
	8					-
(i)	Use correct sin(A	$-B$) and $\cos(A - B)$ form	ula		M1	
		values for cos 30° etc.			M1	
	Obtain given answ	wer correctly			A1	[3
(!!)		$2aat^2 = 2$			D1	
(11)	State 2cosec $x = 3$ Use $\cot^2 x = \csc x$				B1 M1	
		of quadratic equation in co	osec x or sin x		M1	
		$ecx - 5 = 0$ or $5sin^2x = 2sin^2$				
	Obtain sin $x = 3$	or 1			A1√	
	Obtain $\sin x = \frac{3}{5}$	01 -1			AI¥	
	$O1 + \frac{1}{2}$	ot answer for $\sin^{-1}(3)$			Δ 1	
		λ answer to she the t			A1	
	Obtain one correc	(5)				
		(5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	3.1° , 270° and no others	in the range	A1	[6]
	Obtain remaining	2 answers from 36.9°, 14 putside the given range]	3.1° , 270° and no others	in the range	A1 B1	[6]