Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2013	9709	21

1	Eithe	Obtain $2^x = 8$ and $2^x = 6$ State answer 3	M1 A1 B1	
		Use logarithmic method to solve an equation of the form $2^x = k$, where $k > 0$ State answer 2.58	M1 A1	
	<u>Or</u>	State or imply one value for 2^x , e.g. 8, by solving an equation or by inspection State answer 3 State second value for 2^x	B1 B1 B1	
		Use logarithmic method to solve an equation of the form $2^x = k$, where $k > 0$	M1	[6]
		State answer 2.58	A1	[5]
2		$\ln x = \ln(x^2)$ aw for addition or subtraction of logarithms	M1 M1	
		n correct quadratic equation in x	A1 DM1	
		reasonable solution attempt at a 3-term quadratic ndent on previous M marks)	DIVII	
	State	$x = \frac{3}{5}$ and no other solutions	A1	[5]
3	(i) <u>I</u>	Eithe <u>r</u>		
	Ţ	Use $\sin 2x = 2\sin x \cos x$ to convert integrand to $k \sin^2 2x$ Use $\cos 4x = 1 - 2\sin^2 2x$	M1 M1	
		State correct expression $\frac{1}{2} - \frac{1}{2}\cos 4x$ or equivalent	A1	
		$\frac{\text{Or}}{x} = \frac{1 - \cos 2x}{1 - \cos 2x} \qquad 1 - \cos 2x$	3.64	
		Use $\cos^2 x = \frac{1 - \cos 2x}{2}$ and/or $x = \frac{1 - \cos 2x}{2}$ to obtain an equation in $\cos 2x$ only	M1	
	Ţ	$Jse \cos^2 2x = \frac{1 + \cos 4x}{2}$	M1	
	S	State correct expression $\frac{1}{2} - \frac{1}{2}\cos 4x$ or equivalent	A1	[3]

4 (i) Substitute
$$x = -\frac{3}{2}$$
, equate to zero

Substitute $x = -1$ and equate to 8

Obtain a correct equation in any form

Solve a relevant pair of equations for a or for b

Obtain $a = 2$ and $b = -6$

M1

[5]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2013	9709	21

(ii) Attempt either division by 2x + 3 and reach a partial quotient of $x^2 + kx$, use of an identity or observation

Obtain quotient $x^2 - 4x + 3$

Obtain linear factors x - 1 and x - 3

A1 A1

[Condone omission of repetition that 2x + 3 is a factor.]

[If linear factors x - 1, x - 3 obtained by remainder theorem or inspection, award B2 + B1.]

[3]

5 (i) Use product rule to differentiate y
Obtain correct derivative in any form

M1 A1

Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$

M1

Obtain given answer correctly

A1 [4]

(ii) Substitute t = 0 in $\frac{dy}{dx}$ and both parametric equations

B1

Obtain $\frac{dy}{dx} = 2$ and coordinates (1, 0)

B1

M1

Form equation of the normal at their point, using negative reciprocal of their $\frac{dy}{dx}$

State correct equation of normal $y = -\frac{1}{2}x + \frac{1}{2}$ or equivalent

A1 [4]

- 6 (i) Make a recognisable sketch of a relevant graph, e.g. $y = \cot x$ or y = 4x 2 B1

 Sketch a second relevant graph and justify the given statement B1 [2]
 - (ii) Consider sign of $4x 2 \cot x$ at x = 0.7 and x = 0.9, or equivalent Complete the argument correctly with appropriate calculations

M1 A1 [2]

(iii) Show that given equation is equivalent to $x = \frac{1 + 2 \tan x}{4 \tan x}$, or vice versa

B1

[1]

(iv) Use the iterative formula correctly at least once Obtain final answer 0.76 M1 A1

Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval (0.755, 0.765)

B1 [3]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2013	9709	21

7	(i)	State $R = \sqrt{29}$	B1	
		Use trig formula to find α	M1	
		Obtain $\alpha = 21.80^{\circ}$ with no errors seen	A1	[3]
	(ii)	Carry out evaluation of $\sin^{-1}\left(\frac{4}{R}\right) \left(\approx 47.97^{\circ}\right)$	M1	
		Carry out correct method for one correct answer	M1	
		Obtain one correct answer e.g. 13.1°	A1	
		Carry out correct method for a further answer	M1	
		Obtain remaining 3 answers 55.1°, 193.1°, 235.1° and no others in the range	A1	[5]
	(iii)	Greatest value of $10 \sin 2\theta + 4 \cos 2\theta = 2\sqrt{29}$	M1	
		<u>1</u>	A1	[2]
		116		