9709 s11 ms 62

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	62

1	20p P(0, + 20) = 0.	= 4.8 $p = 0.24$ or 4.8/20 , 1, 2) = $(0.76)^{20} + {}^{20}C_1(0.24)^1(0.76)^{19}$ $C_2(0.25)^2(0.76)^{18}$ 109	B1 M1 A1 A1	[4]	Correct value for p Summing 2 or 3 binomial probs o.e., any $p, n = 5$ or 20 Correct unsimplified answer Correct answer
	SR	max 3 out of 4	B1 M1 A1		As above Using N(4.8, 3.648) with cc 2.5 or 3.5 0.114 seen
2	(i)	np = 24, npq = 4.8	B1		24 and 4.8 or $\sqrt{4.8}$ seen can be unsimplified
		$z = \pm \left(\frac{24.5 - 24}{\sqrt{4.8}}\right) = 0.228$	M1 M1		Standardising, need sq rt, cc not necessary Continuity correction 24.5 or 25.5 used
		Prob = 0.590	A1	[4]	Correct answer must be from 24.5
	(ii)	np and nq both > 5.	B1	[1]	Need both
3	(i)	Mean = $45 - 148/36 = 40.9$ or $1472/36$	B1		Correct answer
		EITHER Var = $3089/36 - (-148/36)^2 = 68.9$ sd = 8.30	M1 A1	[3]	$3089/36 - (\pm \text{ their coded mean})^2$ Correct answer
		OR $\Sigma x^2 = 3089 - 36 \times 45^2 + 90 \times 1472 = 62669$ $Var = \left(\frac{62669}{36} - \left(\frac{1472}{36}\right)^2\right)$	M1		Expanding $\Sigma(x - 45)^2$ with at least 2 terms correct and solving, then substituting their Σx^2 in correct variance formula with their mean ² subt numerically
		sd = 8.30	A1		Correct answer
	(ii)	New $\Sigma(x-45) = -148 - 16 = -164$ New $\Sigma(x-45)^2 = 3089 + 16^2 = 3345$	M1 M1		Adding their coded new value to -148 Adding their (coded value) ² to 3089
		New sd = $\sqrt{3345/37 - (-164/37)^2}$	M1		Subst in coded var formula, can have one
		= 8.41	A1	[4]	of 29 and one of –16 here Correct answer
		$OR \Sigma x = 36 \times 45 - 148 = 1472$ New $\Sigma x = 1472 + 29 = 1501$	M1		Finding Σx and adding 29
		$\sum x = 3089 - 36 \times 45^{-} + 90 \times 14/2 = 62669$ New $\sum x^2 = 62669 + 29^2 (= 63510)$	M1		Finding Σx^2 and adding 29 ² , at least 2 terms of 3089, 36 × 45 ² , 90 × 1472
		New sd = $\sqrt{63510/37 - (1501/37)^2}$	M1		Subst their values in correct var formula
		= 8.41	A1		Correct answer

		970	9 s11 ms 62
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	62

4 (i) 90720	B1	[1]	Not 9!/2!2!
(ii) 3 vowels together = $3! \times 7!/2!2! = 7560$	B1 B1		3! oe seen multiplied by integer oe 7 or 6! seen multiplied as a num
$Prob(not together) = \frac{90720 - 7560}{90720} = \frac{83160}{90720}$	M1		Subt from their (i) or dividing by their (i) or $1 - prob$
= 0.917 (=11/12)	A1	[4]	Correct answer from correct working
(iii) One S in ${}^{5}C_{3}$ ways = 10 SS in ${}^{5}C_{2}$ ways = 10 Total = 20	M1 M1 A1	[3]	⁵ C ₃ seen added ⁵ C ₂ seen added Correct answer
$OR \ ^{6}C_{3} = 20$	M1 M1 A1		${}^{6}C_{3} \times 2 \text{ or } \div 2 \text{ or } \times 1 \text{ seen}$ ${}^{6}C_{3} \text{ only}$ Correct answer
5 (i) cf ↑	M1		Attempt at cf table (up to 200)
	M1		Linear scale minimum 0 to 200 and 20 to 80, and labels
	M1		Attempt to plot points at (20.5, 10), (40.5, 42), (50.5, 104), (60.5, 154), (70.5, 182), (90.5, 200), accept (20, 10), (40, 42) or (21, 10), (41, 42) etc
Number of rooms	A1	[4]	All points correct and joined up, allow (0, 0) or (0.5, 0)
(ii) Line on graph up from 30	M1		Line or mark seen, can be implied if
200 - 20 = 180	A1	[2]	Accept 174 – 180 if reading from graph
<i>OR</i> using lin int $10 + \frac{(30 - 20.5)}{20} \times 32 = 25.2$	M1		Can have 20 or 20.5
= 174.8	A1		Accept decimals, 174 – 175 if using lin int
(iii) Line on graph across from 150	M1		Line or mark seen, can be implied if matches graph and in range. 150 seen and line between 140 and 160
59 rooms	Al	[2]	Accept 58 – 60
$OR \text{ lin int } 50.5 + 46/50 \times 10 \\ = 59 \text{ or } 60$	M1 A1		Can have 50 or 50.5 Must be integer

		970	9 s11 ms 62
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	62

6 (i)	z = -1.282	B1		± 1.282 or ± 1.281 seen
	$P(x < 20) = P\left(z < \frac{20 - \mu}{0.8}\right)$	M1		Standardising, no cc, must have 0.8, must be a <i>z</i> -value
	$-1.282 = \frac{20 - \mu}{0.8}$			
	$\mu = 21.0 \text{ cm} (21.0256)$	A1	[3]	Correct answer
(ii)	P(21.5 < <i>x</i> < 22.5)			
	$= P\left(\frac{21.5 - 21.03}{0.8}\right) < z < \left(\frac{22.5 - 21.03}{0.8}\right)$	M1		2 attempts at standardising with their mean, must have 0.8 oe
	$= \Phi(1.8375) - \Phi(0.5875)$ = 0.0670 - 0.7217	M1		Subtracting 2 Φ s ft their mean
	= 0.9670 = 0.7217 = 0.2453	A1		Needn't be entirely accurate, rounding to 0.24 or 0.25
	$P(<2) = P(0) + P(1) = (0.7547)^4 + (0.2453)^1 (0.7547)^3 {}^{4}C_1$	M1		Binomial term with ${}^{4}C_{r}p^{r}(1-p)^{4-r}$ seen $r \neq 0$, any $p < 1$
		M1		Bin expression for $P(0) + P(1)$, any $p < 1$
	= 0.746	A1	[6]	Accept 3sf rounding to 0.75
7 (i)	P(6) = P(3, 9) + P(9, 3) = 2/25 = 0.08 AG	B1	[1]	Accept 2/25 seen
(ii)	x 0 1 2 3 4 5 6 Prob 0.2 0.24 0.08 0.08 0.16 0.16 0.08	M1 A1	[2]	Values 0 – 6 seen could be in list All correct
(iii)	Mean = $\Sigma x p$ = 2.56 (64/25)	B1	[1]	
(iv)	P(4, 5, 6) = 0.4(10/25) or 0.16 + 0.16 + 0.08 = $P(draw) \times 0.4$	B1 f M1	t	ft their P(4, 5, 6) providing $p < 1$ Multiplying by their P(draw) providing $p < 1$
	$= 0.2 \times 0.4 = 0.08 \ (2/25)$	A1ft	[3]	Correct answer
(v)	$P(J \text{ wins on } n\text{th go}) = (0.2)^{n-1} \times 0.4 \text{ oe}$	M1 A1ft	[2]	Mult by any p^n or p^{n-1} , $p < 1$ ft their probs