		970	9 s11 ms 42
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	42

1	(i) $[WD = 65 \times 76\cos 5^{\circ}]$	M1		For using WD = Tdcos α
	Work done is 4920 J	A1	[2]	
	(ii) $[P = 65 \cos 5^{\circ} \times 1.5]$	M1		For using $P = Tv\cos\alpha$
	Rate of working is 97.1 W	A1ft	[2]	ft for the value of ans(i) $\times 1.5 \div 76$ SR for candidates who assume withoutjustification that the speed is constant(max 1/2)t = 76 $\div 1.5 = 50.6s$ rate = WD/t = 4960 $\div 50.6$ = 97.1W
2		M1		For using 'loss of PE = gain in KE + WD against resistance'
	PE loss = $\frac{1}{2} 8(8^2 - 3^2) + 120 (= 340 \text{ J})$	A1		
	[340 = 8gh]	DM1		For using $PE = mgh$
	Height is 4.25 m	A1	[4]	
				SR for candidates who assume without justification that the resistance to motion is constant, usually implicitly by using constant acceleration formulae (max 3/4) For using Newton's second law with 3 terms, $v^2 - u^2 = 2as$ and $h = s \sin \alpha$ M1 For attempting to eliminate α , a and s from the equations ($80\sin \alpha - 120/s = 8a$ $64 - 9 = 2as$, $h = s \sin \alpha$) M1 $80s \sin \alpha - 120 = 4(64 - 9)$ $\rightarrow 80h - 120 = 220$ $\rightarrow h = 4.25$ A1
3	(i) $[\frac{1}{2} 5 \times 50 + \frac{1}{2} 7(8 + 50) + 90 \times 8]$	M1		For using the area property for distance or $s = \frac{1}{2} (u + v)t$
	Distance is 1048 m	A1	[2]	AG
	(ii)	M1		For use of the gradient property for acceleration (deceleration)
	a = (8 - 50)/(12 - 5) or $d = (50 - 8)/(12 - 5)$	A1		
		M1		For using Newton's second law (3 terms)
	850 - F = 85a (or - 85d)	A1		
	Upward force is 1360 N	A1	[5]	

	Pag	e 5	Mark Scheme: Teach	9709_s11_ms_4 Syllabus Paper		
			GCE AS/A LEVEL – May/June 2011			9709 42
4	(i)			M1		For resolving forces in the i and j directions
		$F\cos\theta$	$= 12\cos 30^{\circ}$ (= 10.932)	A1		
			$= 10 - 12\sin 30^\circ$ (= 4)	A1		
				M1		For using $F^2 = X^2 + Y^2$ or $\tan \theta = Y/X$
		F = 11.1	l or $\theta = 21.1$ (accept 21.0)	A1		
		$\theta = 21.$	1 (accept 21.0) or $F = 11.1$	B1	[6]	
						SR for candidates who <u>consistently</u> have cos for sin and vice versa (max 4/6) M1 as above (resolving) A1 for $F\sin\theta = 12\sin 30^{\circ} \text{ and}$ $F\cos\theta = 10 - 12\cos 30^{\circ}$ M1 as above $F^2 = \dots \& \tan\theta = \dots$ A1 for $F = 6.01 \text{ and } \theta = 93.7$
	(ii)	Magnitı	ıde is 12N	B1		
		Directic axis	on is 30° clockwise from +ve 'x'	B1	[2]	
	alte	rnative f	for 4(i)			
		10 and a	ngle of forces with sides 12, F and at least one of the angles θ) or 60° or (θ + 30°)	B1 M1		For use of cosine rule (with θ absent) or use of sine rule (with F absent) and use o
			$^{2}+10^{2}-2 \times 12 \times 10\cos 60^{\circ}$ or 0°)sin $\theta = (10-12\sin 30^{\circ})\cos \theta$	A1		$sin(A \pm B) = sinAcosB \pm sinBcosA$
			l or $\theta = 21.1$ (accept 21.0)	A1		
				M1		For correct method for θ or F
		$\theta = 21.$.1 (accept 21.0) or $F = 11.1$	A1	[6]	
	second alternative for 4(i)					
		For usir 10 N	ng Lami's theorem with 12 N and	M1		
		12/sin(9	$(00 + \theta) = 10/\sin(150 - \theta)$	A1		
		\rightarrow 12 ×	$\theta = 20 \div (\cos \theta + 3^{\frac{1}{2}} \sin \theta)$ $3^{\frac{1}{2}} \sin \theta = 8 \cos \theta$ $\theta = 2 \div (3 \times 3^{\frac{1}{2}})$ 21.1	A1		
			ng Lami's theorem with F N and	M1		
		F/sin12	$0^{\circ} = 12/\sin 111.1^{\circ} (\text{or } 10/\sin 128.9^{\circ})$	A1		
		F = 11.1	l	A1	[6]	

	Pag	ge 6 Mark Scheme: Teachers' version				Syllabus	9_s11_ms_4 Paper
			GCE AS/A LEVEL – M	lay/Jun	e 2011	9709	42
	Alte	ernative fo	or 4(ii)				
		For $X = 1$ Y = 11.1s	1.1cos21.1° and sin21.1° - 10, - Y^2 and tan $\Phi = Y/X$	M1			
			le 12 N and direction 30° e from +ve x-axis	A1	[2]		
5	(i)			M1		For using $0 = u - gt$ to fin- maximum heights.	d times at
		Times to	max. height are 1.2s and 0.7s	A1			
	_	Range of	values is $0.7 < t < 1.2$	A1	[3]		
	(ii)			M1		For using $h = ut - \frac{1}{2} gt^2$ at solve $3h_A = 8h_B$ for t	nd attempting t
		36t - 1.5	$gt^2 = 56t - 4gt^2$	A1			
		t = 8/g		A1			
				M1		For using $v = u - gt$	
		Velocitie	s are $4m^{-1}$ and $-1ms^{-1}$	A1	[5]		
	Alte	ernative fo	or part 5(ii)				
			$s_{2} 3h_{P} = 8h_{Q} \rightarrow 3(v_{P}^{2} - 144) \div$ $(v_{Q}^{2} - 49) \div (-20) \rightarrow 3v_{P}^{2} - 8v_{Q}^{2}$	B1			
		For using \rightarrow	$v_P = 12 - 10t$ and $v_Q = 7 - 10t$ $v_P - v_Q = 5$	B1			
		For elimi v_P (or v_Q)	nating v_Q (or v_P) and solving for .	M1			
		$v_P^2 - 16v$	$v_P + 48 = 0 \rightarrow v_P = 4 \text{ (or 4, 12)}$	A1			
		Upward	velocities are 4 ms ^{-1} and -1 ms ^{-1}	A1	[5]		
6	(i)			M1		For resolving forces on R	vertically
		$2T\cos\alpha$	= 0.6g	A1		Where $\alpha = \frac{1}{2}$ angle ARB	
		Tension i	s 5N	A1	[3]		
	(ii)	[F = T sin	nα]	M1		For resolving forces on B	horizontally
		Frictiona	l component is 4N	A1			
		[N = 0.4g]	$g + T \cos \alpha$]	M1		For resolving forces on B	vertically
		Normal c	omponent is 7 N	A1	[4]		
	(iii)			M1		For using $\mu = F/N$	
		Coefficie	nt is 4/7 or 0.571	Alft	[2]	ft conditional on both M1 in (ii); ft F and/or N	marks scored

		970	9 s11 ms 42	2
Page 7	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2011	9709	42	

	Alte	ernative for Q6(i)/(ii)			
	(i)	For finding the relevant angles and using Lami's theorem	M1		
		$6/\sin 106.26^\circ = T/\sin 126.87^\circ$	A1		
		Tension is 5N	A1	[3]	
	(ii)	$F/sin126.87^\circ = 5/sin90^\circ$	B1		
		Frictional component is 4N	B1		
		$(R-4)/\sin 143.13^\circ = 5/\sin 90^\circ$	B1		
		Normal component is 7 N	B1	[4]	
7	(i)	$[1.3 = 0.9 + 0.004\text{T}, 1.3^2 = 0.9^2 + 2 \times 0.004\text{S}]$	M1		For using $v = u + at$ or $v^2 = u^2 + 2as$
		Time is 100 s (or distance is 110 m)	A1		
		Distance is 110 m (or time is 100 s)	B1	[3]	
	(ii)	$\int kt^3 dt = \frac{1}{4} \text{ kt}^4$	B1		
		$[k(\frac{1}{4}\ 100^4 - 0) = 110]$	M1		For using limits 0 to T and equating definite integral to S
		$k = 4.4 \times 10^{-6}$	A1		
			M1		For attempting to find the speed of the walker and of the cyclist.
		Both are equal to 1.16 ms^{-1} correct to 3 sf.	A1	[5]	
	(iii)	Acceleration = $3kt^2$	B1		
		Acceleration at B is 0.132 ms^{-2}	B1	[2]	