		9709 s11						
	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	, —			
		GCE AS/A LEVEL – May/June 2011	9709	32				
1	EITHER:	State or imply non-modular inequality $x^2 < (5+2x)^2$ equation, or pair of linear equations $x = \pm (5+2x)$, or corresponding	g M1				
		Obtain critical values -5 and $-\frac{5}{3}$ only		A1				
		Obtain final answer $x < -5$, $x > -\frac{5}{3}$		A1				
	OR:	State one critical value e.g. –5, by solving a linear equat from a graphical method, or by inspection	ion or inequality, or	r B1				
		State the other critical value, e.g. $-\frac{5}{3}$, and no other		B1				
		Obtain final answer $x < -5$, $x > -\frac{5}{3}$		B 1	[3]			
		[Do not condone \leq or \geq .]						
2	(i) Use la Use lo Obtain	w for the logarithm of a product or quotient $\log_2 32 = 5$ or $2^5 = 32$ in $x^2 + 5x - 32 = 0$, or horizontal equivalent		M1 M1 A1	[3]			
	(ii) Solve	a 3-term quadratic equation		M1				
	Obtain	n answer $x = 3.68$ only, or exact equivalent, e.g. $\frac{\sqrt{153} - 5}{2}$		A1	[2]			
3	Use correc Obtain 8cc Solve a 3-t Obtain ans Obtain ans [Ignore ans misread.] [SR: The a	t trig formula (or formulae) and obtain an equation in $\cos\theta$ $\sin^2\theta + \cos\theta - 7 = 0$, or equivalent term quadratic in $\cos\theta$ and reach $\theta = \cos^{-1}(a)$ wer 29.0° wer 180° and no others swers outside the given interval. Treat answers in radians (0.50° nswer 180° found by inspection can earn B1.]	95 and 3.14 or π) as a	M1 A1 M1 A1 A1 a	[5]			
4	(i) State Using Obtain	or imply $CT = r \tan x$ or $OT = r \sec x$, or equivalent correct area formulae, form an equation in r and x n the given answer correctly		B1 M1 A1	[3]			
	(ii) Use th Obtain	ne iterative formula correctly at least once n the final answer 1.35		M1 A1				
	Show chang	sufficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or e in the interval (1.345, 1.355)	show there is a sign	n Al	[3]			

Page 5		ao 5	Mark Schome: Teachere' version	9709 Syllabus	<u>9709_s11_ms_32</u>				
		ige o	GCE AS/A EVEL – May/ June 2011	9709	raper 32				
			GCE AS/A LEVEL - May/Julie 2011	9709	52				
5	(i)	EITHER:	State $\frac{dx}{dt} = \sec^2 t / \tan t$, or equivalent		B1				
			State $\frac{dy}{dt} = 2\sin t \cos t$, or equivalent		B1				
			Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$		M1				
			Obtain correct answer in any form, e.g. $2\sin^2 t \cos^2 t$		A1				
		OR:	Obtain $y = e^{2x} / (1 + e^{2x})$, or equivalent		B1				
			Use correct quotient or product rule	. 2	M1				
			Obtain correct derivative in any form, e.g. $2e^{2x} / (1 + e^{2x})$	$)^{2}$	A1	E 43			
			Obtain correct derivative in terms of t in any form, e.g. ($(1 + \tan^2 t) / (1 + \tan^2 t)$	² Al	[4]			
	(ii)	State or ir	mply $t = \frac{1}{2} \pi$ when $r = 0$		B1				
	()	State of It	4		51				
		Form the	equation of the tangent at $x = 0$		M1				
		Obtain co	rrect answer in any horizontal form, e.g. $y = \frac{1}{2}x + \frac{1}{2}$		A1	[3]			
		[SR: If the OR method is used in part (i), give B1 for stating or implying $y = \frac{1}{2}$ or							
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$ w	when $x = 0.1$						
			dv						
6	(i)	Show that	t the differential equation is $\frac{dy}{dx} = 2xy$		B1				
		Separate v	variables correctly and attempt integration of both sides		M1				
		Obtain ter	$rm \ln y$, or equivalent		A1				
		Obtain ter	$\operatorname{m} x^2$, or equivalent		A1				
		Evaluate a	a constant, or use limits $x = 1$, $y = 2$, in a solution containing	g terms alm y and b.	x^2 MI				
		Obtain co	rrect solution in any form		Al	[7]			
		Obtain the	e given answer correctly		AI	[/]			
	(ii)	State that	the gradient at $(-1, 2)$ is -4		B1				
		Show the	e sketch of curve with correct concavity, positive y-in $y = 0$	tercept and axis	of P1	[2]			
		[SR: A so	$k \neq 0$ lution with $k \neq 2$, or not evaluated, can earn B0M1A1A1M1	A1A0 in part (i).]	DI	[2]			
		[SR: If gi	ven answer is assumed valid, give B1 if $\frac{dy}{dy}$ is shown con	rectly to be equal	to				

2xy, is stated to be proportional to xy, and shown to be equal to 4 at (1, 2).]

Page 6		qe 6	Mark Scheme: Teachers' version Svllab		Paper	<u>, </u>	
	,	<u> </u>	GCE AS/A LEVEL – May/June 2011 9709)	32		
	(a)	(i) EITH	<i>HER</i> : Multiply numerator and denominator by $a - 2i$, or equivalent		M1		
			Obtain final answer $\frac{5a}{a^2+4} - \frac{10i}{a^2+4}$, or equivalent		A1		
		OR:	Obtain two equations in x and y , solve for x or for y		M1		
			Obtain final answer $x = \frac{5a}{a^2 + 4}$ and $y = \frac{10}{a^2 + 4}$, or equivalent	ŧ	A1	[2]	
		(ii) Eithe	er state $\arg(u) = -\frac{3}{4}\pi$, or express u^* in terms of a (f.t. on u)		B1√		
		Use o Obta	correct method to form an equation in <i>a</i> , e.g. $5a = -10$ in $a = -2$ correctly		M1 A1	[3]	
	(b)	Show a po Show the	oint representing 2 + 2i in relatively correct position in an Argand diag circle with centre at the origin and radius 2	ram	B1 B1		
		Show the perpendicular bisector of the line segment from the origin to the point representing $2 + 2i$ Shade the correct region					
		[SR: Give the attemp	e the first B1 and the B1 $$ for obtaining $y = 2 - x$, or equivalent, and pt.]	sketching			
	(i)	State or imply partial fractions are of the form $\frac{A}{1+x} + \frac{Bx+C}{2+x^2}$					
		Use a rele	evant method to determine a constant		M1		
		Obtain on	the of the values $A = -2$, $B = 1$, $C = 4$		A1		
		Obtain a s Obtain the	e third value		Al Al	[5]	
	(ii)	Use corr	ect method to obtain the first two terms of the expansion of $\sum_{i=1}^{n-1}$	$\left(1+x\right)^{-1},$			
		$\left(1 + \frac{1}{2}x^2\right)$) or $(2 + x^2)^{-1}$ in ascending powers of x		M1		
		Obtain co Multiply	prrect unsimplified expansion up to the term in x^3 of each partial fraction out fully by $Bx + C$, where $BC \neq 0$	n A1 $\sqrt{+}$	A1√ M1		
		Obtain fir	hal answer $\frac{5}{2}x - 3x^2 + \frac{7}{4}x^3$, or equivalent		A1	[5]	
		[Symbolic	c binomial coefficients, e.g. $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, are not sufficient for the first M1.	The f.t. is			
		on <i>A</i> , <i>B</i> , <i>C</i> [If <i>B</i> or <i>C</i> (ii), max <i>4</i> [In the ca	C.] C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A 4/10.] ase of an attempt to expand $(5x - x^2)(1 + x)^{-1}(2 + x^2)^{-1}$, give M1A1A	$1\sqrt{A}1\sqrt{1}$ in A1 for the			
		[Allow us	is, will for the multiplying out fully, and A1 for the final answer.] se of Maclaurin, giving M1A1 $\sqrt{A1}\sqrt{f}$ for differentiating and obtaining	f(0) = 0			
		and $f'(0)$ is on $A = R$	$=\frac{5}{2}$, A1 $\sqrt{10}$ for f "(0) = -6, and A1 for f "(0) = $\frac{21}{2}$ and the final answer C if used) 1	er (the f.t.			
			$1 = \frac{1}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{3} = \frac{3}{2} = \frac{2}{2} = \frac{2}{3} = $				

[For the identity $5x - x^2 \equiv (2 + 2x + x^2 + x^3)(a + bx + cx^2 + dx^3)$ give M1A1; then M1A1 for using a relevant method to obtain two of a = 0, $b = \frac{5}{2}$, c = -3 and $d = \frac{7}{4}$; then A1 for the final answer in series form.]

© University of Cambridge International Examinations 2011

Page 7		ge 7	Ма	ark Scheme: Teachers' version	Syllabus	Paper	<u>د ر</u>
		.ge :	GC	E AS/A LEVEL – May/June 2011	9709	32	
)	(i)	State or in	nply a correc	t normal vector to either plane, e.g. $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$	or $2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$	B1	
		Carry out	correct proce	ess for evaluating the scalar product of the two	normals	M1	
		Using the	correct proc	ess for the moduli, divide the scalar product b	by the product of t	the	
		moduli an	d evaluate th	e inverse cosine of the result		M1	
		Obtain the	final answe	$r / 9.7^{\circ}$ (or 1.39 radians)		Al	[4]
	(ii)	EITHER:	Carry out	a method for finding a point on the line		M1	
			Obtain su	ch a point, e.g. (1, 3, 0)		A1	
			EITHER:	State two correct equations for the direction	on vector (a, b, c)	of	
				the line, e.g. $a + 2b - 2c = 0$ and $2a + b + 3c$	c = 0	B1	
				Solve for one ratio, e.g. <i>a</i> : <i>b</i>		M1	
				Obtain $a:b:c=8:-7:-3$, or equivalent		A1	
				State a correct final answer, e.g. $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + 3\mathbf{j}$	$-\lambda(8\mathbf{i}-7\mathbf{j}-3\mathbf{k})$	Al√	
			<i>OR1</i> :	Obtain a second point on the line, e.g. $\left(0, \frac{3}{3}\right)$	$\left(\frac{1}{8},\frac{3}{8}\right)$	A1	
				Subtract position vectors to find a direction	vector	M1	
				Obtain $\mathbf{i} - \frac{7}{8}\mathbf{j} - \frac{3}{8}\mathbf{k}$, or equivalent		A1	
				State a correct final answer, e.g. $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + 3\mathbf{j}$	$-\lambda(\mathbf{i} - \frac{7}{8}\mathbf{j} - \frac{3}{8}\mathbf{k})$	A1√	
			<i>OR2</i> :	Attempt to calculate the vector product of the	wo normals	M1	
				Obtain two correct components		A1	
				Obtain $8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k}$, or equivalent		A1	
				State a correct final answer, e.g. $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + 3\mathbf{j}$	$-\lambda(8\mathbf{i}-7\mathbf{j}-3\mathbf{k})$	A1√	
		<i>OR3</i> :	Express o	ne variable in terms of a second		M1	
			Obtain a c	correct simplified expression, e.g. $x = (31 - 8y)$	/ 7	A1	
			Express the	he first variable in terms of a third		M1	
			Obtain a c	correct simplified expression, e.g. $x = (3 - 8z) / (3 - 8z)$	3	Al	
			Form a ve	ector equation of the line		MI	
			State a co	rrect final answer, e.g. $\mathbf{r} = \frac{31}{8}\mathbf{j} + \frac{3}{8}\mathbf{k} + \lambda(8\mathbf{i} -$	7 j – 3 k)	A1√	
		<i>OR4</i> :	Express o	ne variable in terms of a second		M1	
			Obtain a c	correct simplified expression, e.g. $y = (31 - 7x)$	/ 7	A1	
			Express the	ne third variable in terms of the second		M1	
			Obtain a c	correct simplified expression, e.g. $z = (3 - 3x) / (3 - 3x)$	8	A1	
			Form a ve	ector equation of the line		M1	
			State a co	rrect final answer, e.g. $\mathbf{r} = \frac{31}{8}\mathbf{j} + \frac{3}{8}\mathbf{k} + \lambda(-8\mathbf{i})$	+7j + 3k)	A1√	[6]
			[The f.t. is	s dependent on all M marks having been earned	1.]		

				970	9709 sll ms		
	Page 8		Mark Scheme: Teachers' version	Syllabus	Pape	r	
			GCE AS/A LEVEL – May/June 2011	9709	32		
10	(i)	Attempt i	ntegration by parts and reach $\pm x^2 e^{-x} \pm \int 2x e^{-x} dx$		M1*		
		Obtain –	$x^2 e^{-x} + \int 2x e^{-x} dx$, or equivalent	A1			
		Integrate	and obtain $-x^2e^{-x} - 2xe^{-x} - 2e^{-x}$, or equivalent		A1		
		Use limit		M1(dep*)			
		Obtain th	e given answer correctly		A1	[5]	
	(ii)	Use corre	ect product or quotient rule		M1		
		Obtain co	prrect derivative in any form		A1		
		Equate de	erivative to zero and solve for non-zero x		M1		
		Obtain x	= 2 with no errors send		A1	[4]	
	(iii)	Carry out	a complete method for finding the <i>x</i> -coordinate of <i>P</i>		M1		
		Obtain ar	swer $x = 1$		A1	[2]	