varaian	Syllabus	_ Donor	
	9709) s10 ms	73

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	73

1	H ₀ : Pop prop = $\frac{1}{3}$ (or unchanged)		
	H ₁ : Pop prop $< 1/3$ (or decreased)	B1	Accept p
	$\left(\frac{2}{3}\right)^{20} + 30\left(\frac{2}{3}\right)^{19}\left(\frac{1}{3}\right) + {}^{20}C_2\left(\frac{2}{3}\right)^{18}\left(\frac{1}{3}\right)^2$	M1	Attempt Bin(20, $\frac{1}{3}$) P(≤ 3)
	$+ {}^{20}C_3(\frac{2}{3})^{17}(\frac{1}{3})^3$		Allow one term omitted
	= 0.0604/0.0605	A1	
	comp "0.0604" with 0.025	M1	For comparison of their 0.0604
	or support probably not decreased	A1ft [5]	Correct conclusion no contradictions
	SC Use Of Normal Standardising with or without cc	M1	
	Obtains $z = -1.502$	A1	
	Valid Comparison with $z = -1.96$	M1	
	Correct conclusion	AIII	
2	(i) 2-tail; $H_1: \mu \neq 35$	B1 [1]	
	(ii) comp -1.75 with -1.645 (or 1.75 with 1.645) Evidence that μ is not 35 or reject $\mu = 35$	M1 A1 [2]	Allow "Accept $\mu \neq 35$ ". No contradictions
	(iii) 8	B2 [2]	SR B1 for 4, 8.02, or 92%
3	(i) (Approx) normal mean 62	B1 B1	
	$sd = \frac{8.2}{\sqrt{50}} = 1.16 (3 sfs)$	B1	or var = $\frac{8.2^2}{50}$ = 1.34 (3 sfs)
	v 50	[3]	
	(ii) $\frac{64-62}{"1.16"}$ (= 1.725 or 1.724)	M1	For standardising $\div \sqrt{50}$ essential (no CC)
	$1 - \Phi((1.725))$	M1	For correct area consistent with their mean
	= (1 - 0.9577) = 0.0423 (3 sfs)	A1 [3]	

		970	9 s10 ms 73
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	73

4	(i) Mean is 4.8 but ≤ 1 breakdown	B1 [1]	Accept reduction when none has occurred
	(ii) $e^{-4.8}(1+4.8)$ = 0.0477	M1 A1 [2]	Poisson attempt at P(0) (+ P(1))
	(iii) $P(X > 1)$ = 1 - e ^{-0.9} (1 + 0.9) = 0.228 (3 sfs)	M1 M1 A1 [3]	Attempt correct probability for Type II error Allow any λ except 4.8; 1– (P(0)+(P(1))) using Poisson As final answer
5	(i) $\int_{1}^{\infty} \frac{k}{x^4} dx = 1$	M1	Attempt integ $f(x)$ & "= 1"; ignore limits
	$\left[-\frac{k}{3x^3}\right]_1^{\infty} = 1 \text{ oe}$ $(0 + \frac{k}{3} = 1 \implies k = 3 \text{ AG})$	A1 [2]	Correct integrand & limits leading to AG, no errors seen
	(ii) $\int_{1}^{\infty} x \times \frac{3}{x^{4}} dx$ $\left[-\frac{3}{2x^{2}} \right]_{1}^{\infty}$	M1	Attempt integ $xf(x)$; ignore limits.
	$=\frac{3}{2}$	A1	CWO
	$\int_{1}^{\infty} x^2 \times \frac{3}{x^4} \mathrm{d}x$	M1*	Attempt integ $x^2 f(x)$; ignore limits.
	$\left[-\frac{3}{x}\right]_{1}^{\infty} (=3)$	A1	Correct integrand; correct limits
	"3" $-\left(\left\ \frac{3}{2}\right\ \right)^2$	M1*dep	dep 2^{nd} M1 attempt $E(X^2) - [E(X)]^2$
	$=\frac{3}{4}$	A1 [6]	cwo

		970	9 s10 ms 73
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	73

r					
6	(i)	$5 \times (22.4 + 20.3)$ & $5 \times (4.8^2 + 5.2^2)$	(= 213.5) (= 250.4)	B1 B1	For correct expression for new mean For correct expression for new variance
		$z = \frac{180 - "213.5"}{\sqrt{"250.4"}} \ (= -2.117)$		M1	Standardising and use of tables
		$1 - \Phi("-2.117") = \Phi("2.117") = 0.983 (3 \text{ sfs})$		A1 [4]	(no sd/var mixes + no cc)
	(ii)	P(H - W > 0) 20.3 - 22.4 & 4.8 ² + 5.2 ² $z = \frac{0 - (-2.1)}{\sqrt{50.08''}} (= 0.297)$	(= -2.1) (= 50.08)	M1 B1 B1 M1	Or $P(W-H < 0)$ ± 2.1 Correct expression for new mean Correct expression for new variance Standardising and using tables
		$1 - \Phi(``0.297'')$ (= 1 - 0.6168) = 0.383 (3 sfs)		A1 [5]	(no sd/var mixes + no cc)
7	(i)	Patients arrive at constant mean rate Patients arrive at random Patients arrive independently Patients arrive singly	;	B1 B1 [2]	B1 For first correct B1 For second correct Must be in context SR B1 For two correct but not in context
	(ii)	(a) $1 - e^{-4.2} = 0.985$		M1 A1 [2]	Correct expression
		(b) $4.2 \times {}^{10}\!/_{15}$ oe		B1	
		$e^{-2.8} \times (1 + 2.8 + \frac{2.8^2}{2!} + \frac{2.8^3}{3!})$		M1	Allow extra term $e^{-2.8} \times \frac{2.8^4}{4!}$
		= 0.692		A1 [3]	Allow incorrect λ (not 4.2)
	(iii)	N(336, 336) stated or implied		B1	
		$\frac{370.5 - 336}{\sqrt{336}}$ (= 1.882)		M1	ft "336" Allow wrong or no cc or no \checkmark
		$\frac{1 - \Phi(``1.882'')}{= 0.0300/0.0299}$		M1 A1 [4]	Standardising with correct cc and no $$ Allow 0.03