		970	9709 s10 ms 52		
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper		
	GCE AS/A LEVEL – May/June 2010	9709	52		

1	c of m of arc = $20\sin(\pi/2)/(\pi/2)$ (2 + 0.9) $\bar{x} = 2 \times 20\sin(\pi/2)/(\pi/2)$ Distance is 8.78cm	B1 M1 A1 A1 [4]	For attempting to take moments about the diameter
2	(i) $\tan 35^\circ = r/7.5$ r = 5.25	M1 A1ft A1 [3]	For using the idea that the c.m. is vertically above the lowest point of contact ft using their c of m from the base
	(ii) $[\mu mgcos35^\circ > mgsin35^\circ]$ $\mu > tan35^\circ \rightarrow Coefficient is greater than 0.7$	M1 A1 [2]	For using 'no sliding $\rightarrow \mu R >$ weight component' Do not allow $\mu \ge 0.7$ AG
3	(i) $mg = T\cos\theta$ $ma = T\sin\theta$ $\tan\theta = a/g = 0.75$ $T = 0.24 \times 10/\cos\theta = 3$	B1 B1 B1 B1 [4]	SR B1 not B2 for $\tan \theta = v^2/gr$ or a/g used AG For using $T\cos \theta = mg$ to find T
	(ii) $[v^2 = 7.5 \times 2\sin\theta]$ Speed is $3ms^{-1}$	M1 A1 [2]	For using $v^2 = ar$ to find v
4	Weight split is 9N:6N For lamina $9 \times 0.75 + 6 \times 0.5$ = T × 1.5sin30° Tension is 13N Alternatively	B1 M1 A1ft A1 A1 [5]	For taking moments about A
	$[(1.5^{2} + \frac{1}{2} \ 1.5 \times 2) \ \overline{x} = 1.5^{2} \times 0.75 + \frac{1}{2} \ 1.5 \times 2 \times 0.5]$ $\overline{x} = 0.65$ $15 \times 0.65 = T \times 1.5 \sin 30^{\circ}$ Tension is 13N	M1 A1 M1 A1ft A1 [5]	For using $A \overline{x} = A_1 x_1 + A_2 x_2$ For taking moments about A

	Ра	ge 5	Mark Scheme: Teach	Syllabus	9_s10_ms_5 Paper	
			GCE AS/A LEVEL – Ma	9709	52	
5	(i)	7 = $16\tan\theta - 10 \times 16^{2}/(2 \times 20^{2})\cos^{2}\theta$ [7 = $16T - 3.2(1 + T^{2})$] 3.2T ² - $16T + 10.2 = 0$ T = $\frac{3}{4}$, 17/4 [x = $\tan\theta\cos^{2}\theta/0.0125$ or x = $20^{2}\sin2\theta/g$] For $\tan\theta = 0.75$, distance is 38.4 m For $\tan\theta = 4.25$, distance is 17.8 m		B1 M1 A1 A1 [4]	For using $\cos\theta = 1/\sec\theta$ and the given identity to obtain a quadratic in T($\tan\theta$) AEF AG	
	(ii)			M1 A1 A1 [3]	For solving $y = 0$ for x or for using R = V ² sin2 θ /g	
	(iii)	once, bot throughou for which the greate The range	hing two parabolic arcs which inters h starting at the origin, each with $y \ge$ ut, and each returning to the x-axis, to the angle of projection is smaller have er range. es appear significantly greater than x on, and slightly greater, respectively	≥ 0 the arc aving at the B1		
6	(i)	[0.35g = 2]Tension i $[6.25 = \lambda]$ Modulus	× 1⁄4]	M1 A1 M1 A1 [4]	For resolving forces on λ For using $T = \lambda x/L$ AG	P vertically
	(ii)		ease = $25 \times 2^2/(2 \times 4)$ P is at M = $25 \times 0.8^2/(2 \times 4)$	M1 A1 A1 M1	For using EE = $\lambda x^2/2L$ For using EE on release when P is at M + $\frac{1}{2}$ mv ²	-
		$25 \times 2^2/(2)$ Speed is 4	$(\times 4) = 0.35 \text{g} \times 1.8 + 25 \times 0.8^2 / (2 \times 4) + \frac{1}{2}$ (4.90 ms^{-1})	$\begin{array}{c c} 0.35v^2 \\ A1 \\ A1 \\ [6] \end{array}$	2	
	(i)	[0.25v(dv	u/dx) = -(5-x)]	B1	For using Newton's second $a = v(dv/dx)$	ond law and
		$v^{2}/2 = 4(x - v^{2})^{2}$	$4 \int (x-5)dx]$ (x - 5) ² /2 (+ A) - 5) ² prrect square root to obtain v = 10 -	$2x \qquad \begin{array}{c} M1 \\ A1 \\ M1 \\ A1 \\ A1 \\ [6] \end{array}$	For separating variables to integrate For using $v(0) = 10$ Any correct expression AG	
	(ii)	B = 10 (o) x = 5(1 -	$(-2x) = t(-\frac{1}{2} \ln B)$ or equivalent)	M1 A1 A1 B1ft B1 [5]	For using $v = dx/dt$ and variables ft $x = (B/2)(1 - e^{-2t})$ AG	separating