Question	Answer	Marks	Guidance
1	$0 = 15\sin 60 - gt \qquad (t = 3\sqrt{3} / 4 = 1.30)$	M1	Uses $v = u + at$ vertically
	$x = 15\cos 60 \ge 1.3 (= 9.7428)$	A1	
	$y = (15\sin 60)^2 / (2g) (= 8.4375)$	B1	Uses $v^2 = u^2 + 2as$ vertically
	$D = \sqrt{(9.74^2 + 8.44^2)}$	M1	Applies Pythagoras's theorem
	$D = 12.9 \mathrm{m}$	A1	
	Total:	5	

Question	Answer	Marks	Guidance
2(i)	$M = 2\pi \ge 0.2 \ge 0.9 + \pi \ge 0.2^2$	B1	M = total mass of the container
	$(2\pi \times 0.2 \times 0.9 + \pi \times 0.2^2) \bar{x}$ = $2\pi \times 0.2 \times 0.9 \times 0.9/2$	M1	Takes moments about the base
	$\bar{x} = 0.405 \text{ m}$ AG	A1	
	Total:	3	
2(ii)	$\tan\theta = 0.2/0.405$	M1	θ is the angle of slope of the plane
	$\mu = \tan \theta$	B1	
	$\mu = 0.494$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
3(i)	$30 = (20\sin 60)t + \frac{1}{2}gt^2$	M1	Uses $s = ut + \frac{1}{2}at^2$ vertically
	$5t^2 + 10\sqrt{3} \ t - 30 = 0$	M1	Sets up a quadratic equation and attempts to solve it
	t = 1.27	A1	
	Total:	3	

Question	Answer	Marks	Guidance
3(ii)	$v^2 = (20\sin 60)^2 + 2g \ge 30$ (hence v = 30)	B1	Uses $v^2 = u^2 + 2as$ vertically
	$V = \sqrt{30^2 + (20\cos 60)^2}$ or $\tan \theta = 30/(20\cos 60)$	M1	
	$V = 31.6 \text{ ms}^{-1}$	A1	
	$\theta = 71.6^{\circ}$ with the horizontal	A1	Or 18.4° with the downward vertical
	Total:	4	

Question	Answer	Marks	Guidance
4(i)	$A = 0.6 \ge 0.75 + 0.3 \ge 0.75/2 = 0.5625$	B1	A = total area of the lamina
	$0.5625\bar{x} = 0.75 \ge 0.6 \ge 0.3 + \frac{1}{2} = 0.3 \ge 0.75 \ge 0.5625$	M1	Takes moments about AB
	(0.6 + 0.3/3)		
	$\tilde{x} = 0.38 \text{ m} \text{ (from AB)}$ AG	A1	
	$0.5625 \bar{y} = 0.75 \ge 0.6 \ge 0.375 + \frac{1}{2} = 0.3 \ge 0.75$	M1	Takes moments about BC
	x 0.25		
	$\bar{y} = 0.35 \text{ m} \text{ (from BC)}$	A1	
	Total:	5	
4(ii)	$\tan\theta = 0.35/0.38$	M1	$\tan\theta = \bar{y}/\bar{x}$ where θ is the required angle
	$\theta = 42.6^{\circ}$	A1	
	Total:	2	

Question	Answer	Marks	Guidance
5(i)	$T\cos 60 = 1.5 + 0.4g$	M1	Resolve vertically for P
	T = 11 N	A1	
	$T\sin 60 = 0.4 \omega^2 \mathrm{x} 0.5 \sin 60$	M1	Uses Newton's Second Law horizontally for <i>P</i>
	$\omega = \sqrt{55} = 7.42$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
5(ii)	m = 0.15 (from $mg = 1.5$)	B1	Resolves vertically for Q
	$T^* = 0.15 \text{ x } 7.42^2 \text{ x } 0.5 \text{sin60}$	M1	Uses Newton's Second Law horizontally for Q
	$T^* = 3.57 \text{ N}$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
6(i)	Friction = $0.4 \times 0.4 g$	B1	Uses $F = \mu R$
	$0.4v dv/dx = -0.4 \ge 0.4g - 0.8/x$	M1	Uses Newton's Second Law and $a = v dv/dx$
	v dv/dx = -4 - 2/x	A1	
	Total:	3	
6(ii)	$\int v \mathrm{d}v = \int \left(-4 - \frac{2}{x}\right) \mathrm{d}x$	M1	Separates the variables and attempts to integrate
	$v^2/2 = -4x - 2\ln x (+c)$	A1	
	$v = U$ when $x = 1$ hence $c = U^2/2 + 4$	M1	Attempts to find <i>c</i>
	$0=-4 \times 2 - 2\ln 2 + U^{2}/2 + 4 [U^{2} = 10.7(725)]$ $0=-4 \times 2.1 - 2\ln 2.1 + U^{2}/2 + 4 [U^{2} = 11.7(677)]$	M1	Put $v = 0$ and $x = 2$ Put $v = 0$ and $x = 2.1$
	3.28 < U < 3.43	A1	
	Total:	5	

Question	Answer	Marks	Guidance
7(i)	0.4g = 24e/0.6	M1	Uses $T = \lambda x/L$
	e = 0.1 m	A1	
	Total:	2	
7(ii)	Initial EE = $24 \times 0.1^2 / (2 \times 0.6) (= 0.2 \text{ J})$	B1	Uses $EE = \lambda x^2 / 2L$
	$0.4 \times 5^{2}/2 + 0.4gd = 24(0.1 + d)^{2}/(2 \times 0.6) - 24$ × 0.1 ² /(2 × 0.6)	M1 A1	Set up a 4 term energy equation involving EE, PE and KE
	d = 0.5 m	A1	
	Total:	4	

Question	Answer	Marks	Guidance
7(iii)	<i>e</i> = 0.2	B1	
	$\begin{array}{c} 0.8v^2/2 = 24 \ge 0.6^2/(2 \ge 0.6) - 24 \ge 0.2^2/(2 \ge 0.6) \\ 0.6) - 0.8g \ge 0.4 \end{array}$	M1 A1	Set up a 4 term energy equation in EE, PE and KE
	$v = 2\sqrt{2} = 2.83 \text{ ms}^{-1}$	A1	
	Total:	4	