A light spring, of other end attached	ass m is placed on a fixed smooth p f natural length a and modulus of the total total fixed point a 0 at the top of a 1. The system is released from res	of elasticity $3mg$, has one end of the plane. The spring lies al	attached to <i>P</i> and the ong a line of greates
Find, in terms o motion.	f a and θ , an expression for the	greatest extension of the spri	ng in the subsequen [3
		-	
	000	4.1	

A particle P is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle P is held with the string taut and making an angle θ with the downward vertical. The particle P is then projected with speed $\frac{4}{5}\sqrt{5ag}$ perpendicular to the string and just completes a vertical circle (see diagram).

Find the value of $\cos \theta$.	[5]
	,

a ho	prizontal circle with a constant angular speed $\sqrt{rac{g}{a}}$ with the string incline	ed at an angle θ to t
	nward vertical through O . The length of the string during this motion is $(k-1)^{-1}$	
(a)	Find the value of k .	
` /		
(I-)	Find the color of and 0	
(D)	Find the value of $\cos \theta$.	

4

The diagram shows the cross-section ABCD of a uniform solid object which is formed by removing a cone with cross-section DCE from the top of a larger cone with cross-section ABE. The perpendicular distance between AB and DC is h, the diameter AB is h and the diameter h is h and h is h is h is h is h in h is h in h in

			olid object fron
٠	 	 	

The object is freely suspended from the point B and hangs in equilibrium. The angle between AB and the downward vertical through B is θ .

Given that $h = \frac{13}{4}r$, find th		[2
	$\zeta \approx 2$	

- A particle P is projected with speed u at an angle α above the horizontal from a point O on a horizontal plane and moves freely under gravity. The horizontal and vertical displacements of P from O at a subsequent time t are denoted by x and y respectively.
 - (a) Derive the equation of the trajectory of P in the form

		$y = x \tan \alpha -$	$-\frac{gx^2}{2u^2}\sec^2\alpha.$	[3]
	point Q is the highest point on t		of P in the cas	se where $\alpha = 45^{\circ}$.
(b)	Show that the x-coordinate of g	Q is $\frac{u^2}{2g}$.		[3]

Two smooth spheres A and B have equal radii and masses m and 2m respectively. Sphere B is at rest on

a)	Find, in terms of u and e , the velocities of A and B after the collision.	[3]
f <i>B</i> he	sequently, B collides with a fixed vertical wall which makes an angle θ with the divided where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collider in the sequence of the sequence B and the wall is $\frac{2}{3}$.	
f <i>B</i> The ne l	B, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	
f <i>B</i> The ne l	P, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collid	
f <i>B</i> he ne l	B, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B.	les with the wall,
f <i>B</i> The ne l	R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e.	les with the wall,
f <i>B</i> The	R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e.	les with the wall,
f <i>B</i> he ie k	R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e.	les with the wall,
f <i>B</i> he ne l	R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e.	les with the wall,
f <i>B</i> he ne l	R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e.	les with the wall,
f <i>B</i> The ne l	R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e.	les with the wall,
f <i>B</i> he he l	R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e.	les with the wall,
f <i>B</i> The ne l	R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e.	les with the wall,

6

	$n s^{-1}$ directed towards O .	
(a)	Show that the velocity $v \mathrm{ms}^{-1}$ of P is given by $v = \frac{10(1-2x)}{x}$.	
		•••••

Show that x and t are relate x as t becomes large.			
	•••••		
	•••••		
		•••••	
	•••••		•••••
		•••••	
		•••••	
	••••••	••••••	•••••
		•••••	•••••
	•••••		••••••
		••••	