| A light spring, of other end attached | ass m is placed on a fixed smooth p f natural length a and modulus of the total total fixed point a 0 at the top of a 1. The system is released from res | of elasticity $3mg$, has one end of the plane. The spring lies al | attached to <i>P</i> and the ong a line of greates | |---------------------------------------|--|--|--| | Find, in terms o motion. | f a and θ , an expression for the | greatest extension of the spri | ng in the subsequen [3 | - | | | | | | | | | 000 | 4.1 | | A particle P is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle P is held with the string taut and making an angle θ with the downward vertical. The particle P is then projected with speed $\frac{4}{5}\sqrt{5ag}$ perpendicular to the string and just completes a vertical circle (see diagram). | Find the value of $\cos \theta$. | [5] | |-----------------------------------|-----| , | | a ho | prizontal circle with a constant angular speed $\sqrt{ rac{g}{a}}$ with the string incline | ed at an angle θ to t | |------|--|------------------------------| | | nward vertical through O . The length of the string during this motion is $(k-1)^{-1}$ | | | (a) | Find the value of k . | | | ` / | (I-) | Find the color of and 0 | | | (D) | Find the value of $\cos \theta$. | 4 The diagram shows the cross-section ABCD of a uniform solid object which is formed by removing a cone with cross-section DCE from the top of a larger cone with cross-section ABE. The perpendicular distance between AB and DC is h, the diameter AB is h and the diameter h is h and is h and h is h is h and h is h is h and h is h is h is h is h in h is h in | | | | olid object fron | |---|------|------|------------------| | |
 |
 | | | | | | | | ٠ |
 |
 | | | | |
 | | | |
 |
 | | | | | | | The object is freely suspended from the point B and hangs in equilibrium. The angle between AB and the downward vertical through B is θ . | Given that $h = \frac{13}{4}r$, find th | | [2 | |--|-------------------|----| $\zeta \approx 2$ | | - A particle P is projected with speed u at an angle α above the horizontal from a point O on a horizontal plane and moves freely under gravity. The horizontal and vertical displacements of P from O at a subsequent time t are denoted by x and y respectively. - (a) Derive the equation of the trajectory of P in the form | | | $y = x \tan \alpha -$ | $-\frac{gx^2}{2u^2}\sec^2\alpha.$ | [3] | |-----|-------------------------------------|---------------------------|-----------------------------------|----------------------------------| point Q is the highest point on t | | of P in the cas | se where $\alpha = 45^{\circ}$. | | (b) | Show that the x-coordinate of g | Q is $\frac{u^2}{2g}$. | | [3] | Two smooth spheres A and B have equal radii and masses m and 2m respectively. Sphere B is at rest on | a) | Find, in terms of u and e , the velocities of A and B after the collision. | [3] | |---------------------------|--|--------------------| f <i>B</i>
he | sequently, B collides with a fixed vertical wall which makes an angle θ with the divided where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collider in the sequence of the sequence B and the wall is $\frac{2}{3}$. | | | f <i>B</i>
The
ne l | B, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. | | | f <i>B</i>
The
ne l | P, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collid | | | f <i>B</i>
he
ne l | B, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. | les with the wall, | | f <i>B</i>
The
ne l | R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e. | les with the wall, | | f <i>B</i>
The | R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e. | les with the wall, | | f <i>B</i>
he
ie k | R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e. | les with the wall, | | f <i>B</i>
he
ne l | R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e. | les with the wall, | | f <i>B</i>
he
ne l | R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e. | les with the wall, | | f <i>B</i>
The
ne l | R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e. | les with the wall, | | f <i>B</i>
he
he l | R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e. | les with the wall, | | f <i>B</i>
The
ne l | R, where $\tan \theta = \frac{3}{4}$. coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collic kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B. Find the possible values of e. | les with the wall, | 6 | | $n s^{-1}$ directed towards O . | | |-----|---|-------| | (a) | Show that the velocity $v \mathrm{ms}^{-1}$ of P is given by $v = \frac{10(1-2x)}{x}$. | ••••• | Show that x and t are relate x as t becomes large. | | | | |--|--------|--------|--------| | | | | | | | ••••• | ••••• | | | | | | | | | | | | | | | | ••••• | ••••• | | ••••• | | | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | •••••• | •••••• | ••••• | ••••• | ••••• | | | | | | | | ••••• | | •••••• | •••• | | | | | | |