|
 |
 | | |-----------|-----------|--| |
 |
 | | | | | | | •••••• |
••••• | | |
 |
 | | |
 |
 | | | | | | |
••••• |
••••• | | |
 |
 | | | | | | | | | | |
 |
 | | |
 |
 | | | | | | |
 |
 | | |
 |
 | | | | | | | | | | |
 |
 | | |
 |
 | | | | | | |
••••• |
••••• | | |
 |
 | | | | | | | | | | |
 |
 | | |
 |
 | | | | | | | |
 | | |
 |
 | | |
 |
 | | | | | | | | | | |
 | | | | | | | | (b) | Find the length of the arc of the curve with equation $y = -\ln \cos x$ the point where $x = \frac{1}{2}\pi$. | from the point where $x =$ | |-----|--|----------------------------| | (b) | Find the length of the arc of the curve with equation $y = -\ln \cos x$ the point where $x = \frac{1}{4}\pi$. | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | | (b) | | from the point where $x =$ | 3 The matrix **A** is given by $$\mathbf{A} = \begin{pmatrix} 6 & -9 & 5 \\ 5 & -8 & 5 \\ 1 & -1 & 2 \end{pmatrix}.$$ |] | Find the eigenvalues of A . | |---|------------------------------------| | | | | | | | | | | | | | | | | ٠ | | | | | | | | | | | | ٠ | | | ٠ | | | | | | ٠ | | | ٠ | | | | | | | | | | | | | | | ٠ | | | | | | | | | • | | | ٠ | | | | | | | $\mathbf{A}^{-1} = p\mathbf{A}^2 + q\mathbf{I}$, when | | |----------|--|-------| |
 | | | |
 | | | |
 | | | | | | | |
 | ••••• | ••••• | |
 | | | |
 | | | | | | | | | | | |
 | | | |
 | | | |
 | | | | | | | |
 | | | |
 | | | |
 | | | | | | | | | | | |
 | ••••• | ••••• | |
 | | | |
 | | | | | | | | | | | |
 | | | |
 | | | |
 | | | | | | | |
 | | | |
 | | | |
 | | | | | | | | | | | |
/00/ | | | 4 It is given that (a) | $x = -t + \tan^{-}$ | ^{-1}t | and | $y = t + \sinh^{-1} t.$ | |---------------------|----------|------|-------------------------| | JU UCCIII | v | ullu | y v i Dillill v. | | (b) | Find the value of $\frac{d^2y}{dx^2}$ | when $t = \frac{3}{4}$. | | [5] | |-----|---------------------------------------|--------------------------|------|-----| | | | |
 | | | | | ••••• |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | | | 100 | | | 5 Find the solution of the differential equation $$x(x+7)\frac{\mathrm{d}y}{\mathrm{d}x} + 7y = x$$ | for which $y = 7$ when $x = 1$. Give your answer in the form $y = f(x)$. | [9] | |--|-----| 6 The diagram shows the curve with equation $y = \ln(1+x)$ for $0 \le x \le 1$, together with a set of n rectangles each of width $\frac{1}{n}$. (a) By considering the sum of the areas of these rectangles, show that $\int_0^1 \ln(1+x) dx < U_n$, where $$U_n = \frac{1}{n} \ln \frac{(2n)!}{n!} - \ln n.$$ [4] | 63 | |----| | ••••• | |
 | |--|--|---| | | |
 | | | | | | | | | | | |
 | | | |
 | | | | | | | |
 | | | |
 | | | | | | ••••• | |
• | | | |
 | | | |
 | | | | | | | |
 | | | |
 | | | | | | | |
 | | | |
 | | | |
 | | | | | | | |
 | | | |
 | | By simplifying $II = I$ | show that $\lim_{n \to \infty} (U_n - L_n) = 0$. | | | \mathbf{N} | $\lim_{n\to\infty} (\mathcal{O}_n \mathcal{D}_n)$ 0. | | | By simplifying $U_n - L_n$, | $n \rightarrow \infty$ | | | Sy simplifying $U_n - L_n$, | |
 | | Sy simpinying $U_n - L_n$, | |
 | | Sy simpinying $O_n - L_n$, | |
 | | Sy simpinying $O_n - L_n$, | ### ### ############################## | | | Sy simplifying $O_n - L_n$, | | | | By simplifying $O_n - L_n$, | | | | By simplifying $\mathcal{O}_n - \mathcal{L}_n$, | | | | Sy simplifying $\mathcal{O}_n - \mathcal{L}_n$, | | | | | | | | Sy simplifying $\mathcal{O}_n - \mathcal{L}_n$, | | | 7 The variables x and y are related by the differential equation $$4\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - y = 3.$$ It is given that, when x = 0, y = -3 and $\frac{dy}{dx} = 2$. | F | ind y in terms of x . | | |-----|---------------------------|-----| | | | | | | | | | ••• | | | | | | | | | | | | ••• | •• | | | | • • | | | | •• | | | | | | | | | | | | ••• | (2) | | Let I | $I_{m,n} = \int_0^{\frac{1}{2}\pi} \sin^m \theta \cos^n \theta d\theta.$ | | |-------|---|--| | b) | Show that, for $m \ge 2$ and $n \ge 0$, | | | | $I_{m,n} = \frac{m-1}{m+n} I_{m-2,n}.$ | $\cos^5\theta = a\cos 5\theta + b\cos 3\theta + c\cos \theta,$ | | |--------------------------------|--|--| | where a , b and c are co | nstants to be determined. | | | , | ••• | | |-----|--| | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | | | | | | |