••••••	 •••••	
 •••••	 •••••	
 •••••	 •••••	

(b)	Find the length of the arc of the curve with equation $y = -\ln \cos x$ the point where $x = \frac{1}{2}\pi$.	from the point where $x =$
(b)	Find the length of the arc of the curve with equation $y = -\ln \cos x$ the point where $x = \frac{1}{4}\pi$.	from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$
(b)		from the point where $x =$

3 The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} 6 & -9 & 5 \\ 5 & -8 & 5 \\ 1 & -1 & 2 \end{pmatrix}.$$

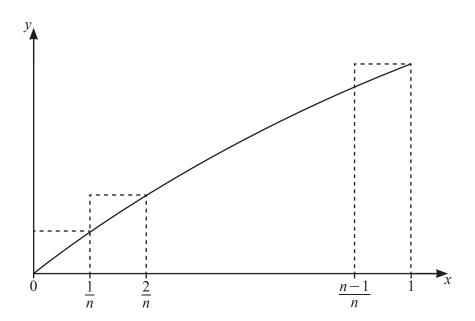
]	Find the eigenvalues of A .
٠	
٠	
٠	
٠	
٠	
٠	
•	
٠	

	$\mathbf{A}^{-1} = p\mathbf{A}^2 + q\mathbf{I}$, when	
 	•••••	•••••
 	•••••	•••••
 /00/		

4 It is given that

(a)

$x = -t + \tan^{-}$	^{-1}t	and	$y = t + \sinh^{-1} t.$
JU UCCIII	v	ullu	y v i Dillill v.


(b)	Find the value of $\frac{d^2y}{dx^2}$	when $t = \frac{3}{4}$.		[5]
		•••••	 	
		100		

5 Find the solution of the differential equation

$$x(x+7)\frac{\mathrm{d}y}{\mathrm{d}x} + 7y = x$$

for which $y = 7$ when $x = 1$. Give your answer in the form $y = f(x)$.	[9]

6

The diagram shows the curve with equation $y = \ln(1+x)$ for $0 \le x \le 1$, together with a set of n rectangles each of width $\frac{1}{n}$.

(a) By considering the sum of the areas of these rectangles, show that $\int_0^1 \ln(1+x) dx < U_n$, where

$$U_n = \frac{1}{n} \ln \frac{(2n)!}{n!} - \ln n.$$
 [4]

63

•••••		
•••••		 •
By simplifying $II = I$	show that $\lim_{n \to \infty} (U_n - L_n) = 0$.	
\mathbf{N}	$\lim_{n\to\infty} (\mathcal{O}_n \mathcal{D}_n)$ 0.	
By simplifying $U_n - L_n$,	$n \rightarrow \infty$	
Sy simplifying $U_n - L_n$,		
Sy simpinying $U_n - L_n$,		
Sy simpinying $O_n - L_n$,		
Sy simpinying $O_n - L_n$,	### ### ##############################	
Sy simplifying $O_n - L_n$,		
By simplifying $O_n - L_n$,		
By simplifying $\mathcal{O}_n - \mathcal{L}_n$,		
Sy simplifying $\mathcal{O}_n - \mathcal{L}_n$,		
Sy simplifying $\mathcal{O}_n - \mathcal{L}_n$,		

7 The variables x and y are related by the differential equation

$$4\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - y = 3.$$

It is given that, when x = 0, y = -3 and $\frac{dy}{dx} = 2$.

F	ind y in terms of x .	
•••		
•••		
••		
• •		
••		
•••		
		(2)

Let I	$I_{m,n} = \int_0^{\frac{1}{2}\pi} \sin^m \theta \cos^n \theta d\theta.$	
b)	Show that, for $m \ge 2$ and $n \ge 0$,	
	$I_{m,n} = \frac{m-1}{m+n} I_{m-2,n}.$	

	$\cos^5\theta = a\cos 5\theta + b\cos 3\theta + c\cos \theta,$	
where a , b and c are co	nstants to be determined.	
,		

•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	