8MA0 Unit Test

$Mechanics-Constant\ acceleration$

Time allowed: 45 minutes

Centre:

Name:

Teacher:

Question	Points	Score
1	7	
2	8	
3	9	
4	12	
5	14	
Total:	50	

How I can achieve better:

- •
- •
- _
- •
- •
- •

- 1. A car is initially travelling with a constant velocity of 15ms^{-1} for T s. It then decelerates at a constant rate for $\frac{T}{2}$ s, reaching a velocity of 10ms^{-1} . It then immediately accelerates at a constant rate for $\frac{3T}{2}$ s reaching a velocity of 20ms^{-1} .
 - (a) Sketch a velocity-time graph to illustrate the motion.
 - (b) Given that the car travels a total distance of 1312.5 m over the journey described, find the [4] value of T.

Total: 7

[3]

- 2. A racing car starts from rest at the point A and moves with constant acceleration of 11 ms^{-2} for 8 s. The velocity it has reached after 8 s is then maintained for T s. The racing car then decelerates from this velocity to 40 ms⁻¹ in a further 2 s, reaching point B.
 - (a) Sketch a velocity-time graph to illustrate the motion of the racing car. Include the top [5] speed of the racing car in your sketch.
 - (b) Given that the distance between A and B is 1404 m, find the value of T.

Total: 8

[3]

- 3. A cyclist is descending down a mountain with constant acceleration. She passes through three checkpoints, P, Q and R, with velocity 6 ms⁻¹, x ms⁻¹, and 20 ms⁻¹ repsectively. The time to taken to travel from P to R is 35 s.
 - (a) Find the acceleration of the cyclist.

Given that $\frac{t_1}{t_2} = \frac{4}{3}$, where t_1 s is the time taken to travel from P to Q and t_2 s is the time taken to travel from Q to R.

- (b) Find the value of x.
- (c) Find the distance between P and R.

Total: 9

[2]

[5]

[2]

- 4. A particle P passes through point A with velocity 2.8 ms^{-1} and constant acceleration 0.12 ms^{-2} . Three seconds later a second particle Q passes through A with velocity 2.4 ms^{-1} and constant acceleration 0.2 ms^{-2} .
 - (a) Write down expressions for the displacements of P and Q from A, in terms of t, where t s [4] is the time after P passed through A,
 - (b) Show that, when the particles meet, $2t^2 50t 315 = 0.$ [3]
 - (c) Find the distance from A when the two particles meet.

Total: 12

[5]

5.	A ball is thrown	vertically upwards	with a speed of 16 ms ⁻	¹ from a point 80 m	above the ground.
		V 1	1	1	0

- (a) Find the speed with which the ball strikes the ground.
 - (b) Find the total time that the ball is more than 85 m above the ground. [6]

When the ball strikes the ground it rebounds with $\frac{1}{5}$ of the speed with which it strikes the ground.

(c) Find the greatest height reached by the ball when it rebounds from the floor. [4]

Total: 14

[4]

