Pearson Edexcel AS Mathematics 8MA0

Practice Paper D

Time allowed: 2 hours

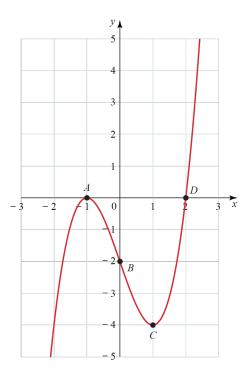
School: www.CasperYC.club

Name:

Teacher:

How I can achieve better:

- •
- •
- •


Question	Points	Score
1	4	
2	5	
3	5	
4	5	
5	5	
6	5	
7	8	
8	9	
9	9	
10	10	
11	10	
12	12	
13	13	
Total:	100	

1.

$$f(x) = x^3 - 3x - 2.$$

The figure below shows a sketch of part of the curve with equation y = f(x).

- (a) On a separate set of axes, sketch the curve with equation y = f(2x) showing the location and coordinates of the images of points A, B, C and D.
- (b) On a separate set of axes, sketch the curve with equation y = f(-x) showing the location [2] and coordinates of the images of points A, B, C and D.

Total: 4

2.	Find $\int (5 - 3\sqrt{x})^2 \mathrm{d}x.$

	$(2^{x-1})^2$ 1	$8(8^{x-1}) + 32$	– 0	
	(8) -1	0(0) + 32	= 0.	

[1]

4.	A buoy is a device which floats on the surface of the sea and moves up and down as waves pass.	
	For a certain buoy, its height, above its position in still water, y in metres, is modelled by a sine	
	function of the form $y = \frac{1}{2}\sin(180t^{\circ})$, where t is the time in seconds.	
	(a) Sketch a graph showing the height of the buoy above its still water level for $0 \le t \le 10$	[3]
	showing the coordinates of points of intersection with the t -axis.	
	(b) Write down the number of times the buoy is 0.4 m above its still water position during the first 10 seconds.	[1]
	(c) Give one reason why this model might not be realistic.	[1]
		Total: 5

Find the set of values	of x for which is	f(x) is increas	ing.	

6.	The speed,	v 1	ms^{-1} ,	of	a	${\bf roller coaster}$	at	${\rm time}$	t s	is	${\rm given}$	by
----	------------	-----	-------------	----	---	------------------------	----	--------------	-----	----	---------------	----

$$v(t) = \frac{1}{20} \left(50\sqrt{t} + 20t^2 - t^3 \right), \text{ where } 0 \le t \le 20.$$

The distance, s m, travelled by the rollercoaster in the first 20s is given by $s = \int_0^{20} v(t) dt$.
Find the value of s , giving your answer to 3 significant figures.

Total: 8

7.

$$f(x) = x^2 - (k+8)x + (8k+1).$$

- (a) Find the discriminant of f(x) in terms of k giving your answer as a simplified quadratic. [3]
- (b) If the equation f(x) = 0 has two equal roots, find the possible values of k. [2]
- (c) Show that when k = 8, f(x) > 0 for all values of x. [3]

8.	The	equations of two circles are $x^{2} + 10x + y^{2} - 12y = 3$ and $x^{2} - 6x + y^{2} - 2qy = 9$.	
	(a)	Find the centre and radius of each circle, giving your answers in terms of q where necessary.	[6]
	(b)	Given that the distance between the centres of the circles is $\sqrt{80}$, find the two possible values of q .	[3]
			Total: 9

9.	The graph of $y = ab^x$ passes through the points $(2,400)$ and $(5,50)$.	
	(a) Find the values of the constants a and b .	[5]
	(b) Given that $ab^x < k$, for some constant $k > 0$, show that	[4]
	$x > \frac{\log\left(\frac{1600}{k}\right)}{\log(2)},$	
	where log means log to any valid base.	
		Total: 9

(Q9 continued)	

(a) Calculate the value of $-2\tan(-120^{\circ})$.

[1]

[7]

- (b) On the same set of axes sketch the graphs of $y = 2\sin(x 60^{\circ})$ and $y = -2\tan(x)$, in the interval $-180^{\circ} \le x \le 180^{\circ}$, showing the coordinates of points of intersection with the coordinate axes in exact form.
- [1] (c) Explain how you can use the graph to identify solutions to the equations

$$y = 2\sin(x - 60^\circ) + 2\tan(x) = 0, -180^\circ \le x \le 180^\circ.$$

(d) Write down the number of solutions of the above equation.

Total: 10

[1]

(Q10 continued)	

The point P has x -coordinate 2. (a) Find $\frac{dy}{dx}$ in terms of x .	[2]
(b) Find the equation of the tangent to the curve C at the point P .	[4]
(c) The normal to C at P intersects the x -axis at A . Find the coordinates of A .	[4]
	Total: 10

(Q11 continued \dots)		

12.

$$f(x) = x^3 + x^2 + px + q,$$

where p and q are constants. Given that f(5) = 0 and f(-3) = 8,

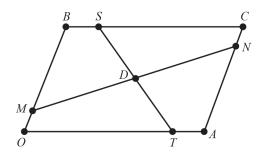
(a) find the values of p and q,

[7]

[5]

(b) factorise f(x) completely.

Total: 12


(Q12 continued)		

13. OACB is a parallelogram. $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$.

The points M, S, N and T divide OB, BC, CA and AO in the ratio 1: 4 respectively.

The lines ST and MN intersect at the point D.

(a) Express \overrightarrow{MN} in terms of a and b.

[2]

(b) Express \overrightarrow{ST} in terms of a and b.

[2] [9]

(c) Show that the lines MN and ST bisect one another.

Total: 13

(Q13 continued)	

