Pearson Edexcel AS Mathematics 8MA0

Practice Paper C

Time allowed: 2 hours

School: www.CasperYC.club

Name:

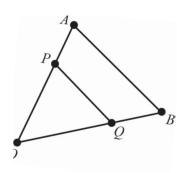
Teacher:

How I can achieve better:

- •
- •
- •

Question	Points	Score
1	4	
2	4	
3	5	
4	5	
5	6	
6	7	
7	8	
8	9	
9	9	
10	10	
11	10	
12	11	
13	12	
Total:	100	

[4]



2.	(a)		etch the graph of $y = 8^x$ stating the coordinates of any points where the graph crosses a coordinate axes.	[2]
	(b)	i.	Describe fully the transformation which transforms the graph $y=8^x$ to the graph $y=8^{x-1}$.	[1]
		ii.	Describe the transformation which transforms the graph $y=8^{x-1}$ to the graph $y=8^{x-1}+5$.	[1]
				Total: 4

3. In $\triangle OAB$, $\overrightarrow{OA} = a$, and $\overrightarrow{OB} = b$.

P divides OA in the ratio 3:2 and Q divides OB in the ratio 3:2.

(a) Show that PQ is parallel to AB.

[4]

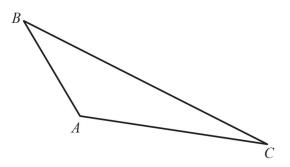
(b) Given that the length of AB is 10 cm, find the length of PQ.

[1]

[5]

4.	
	$g(x) = \frac{4}{x-6} + 5, x \in \mathbb{R}.$
	Sketch the graph $y = g(x)$.
	Label any asymptotes and any points of intersection with the coordinate axes.

[6]


	$f(x) = 2x^3 - x^2 - 13x - 6.$
Use t	the factor theorem and division to factorise $f(x)$ completely.

6.	(a)	Fully expand $(p+q)^5$.	[2]
	(b)	A fair four-sided die, numbered 1, 2, 3 and 4, is rolled 5 times.	[5]
		Let p represent the probability that the number 4 is rolled on a given roll and let q represent	
		the probability that the number 4 is not rolled on a given roll.	
		Using the first three terms of the binomial expansion from part (a), or otherwise, find the	
		probability that the number 4 is rolled at least 3 times.	
			Total: 7

7. In $\triangle ABC$, $\overrightarrow{AB} = -3\mathbf{i} + 6\mathbf{j}$, and $\overrightarrow{AC} = 10\mathbf{i} - 2\mathbf{j}$.

(a) Find the size of $\angle BAC$, in degrees, to 1 decimal place.

[5]

[3]

(b) Find the exact value of the area of $\triangle ABC$.

8.	3. The points A and B have coordinates $(3k-4,-2)$ and $(1,k+1)$ respectively.	ctively, where k is a
	constant.	
	Given that the gradient of AB is $-\frac{3}{2}$,	
	(a) show that $k = 3$,	[2]
	(b) find an equation of the line through A and B ,	[3]
	(c) find an equation of the perpendicular bisector of A and B .	[4]
	Leave your answer in the form $ax + by + c = 0$ where a, b and c are in	tegers.
		Total: 9

9. A stone is thrown from the top of a cliff.

The height h, in metres, of the stone above the ground level after t seconds is modelled by the function

$$h(t) = 115 + 12.25t - 4.9t^2.$$

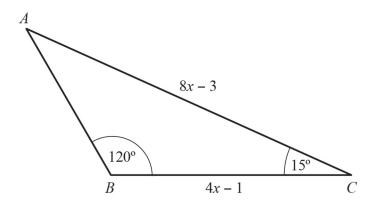
- (a) Give a physical interpretation of the meaning of the constant term 115 in the model. [1]
- (b) Write h(t) in the form $A B(t C)^2$, where A, B and C are constants to be found.
- (c) Using your answer to part (b), or otherwise, find, with justification
 - i. the time taken after the stone is thrown for it to reach ground level,

ch this [2]

Total: 9

[3]

[3]


ii. the maximum height of the stone above the ground and the time after which this maximum height is reached.

(Q9 continued)	

10. The diagram shows $\triangle ABC$ with $AC=8x-3, BC=4x-1, \angle ABC=120^{\circ}$ and $\angle ACB=15^{\circ}$.

(a)	Show	that	the	exact	value	of	x	is	$\frac{9+\sqrt{6}}{20}$
-----	------	------	-----	-------	-------	----	---	----	-------------------------

[7]

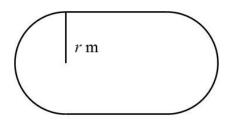
[3]

1	(ね)	Find	tho	oroo	$\circ f$	$\triangle ABC$,	giving	17011F	oncinor	t o	9	dooimal	րլ	0.000
1	(\mathbf{D})	гmа	ше	area	OI	$\triangle ADC$,	giving	your	answer	ιO	\mathcal{L}	uecimai	ŊΙ	aces

11.	(a)	Given	that
-----	-----	-------	------

$$\int_{a}^{2a} 10 - 6x \, \mathrm{d}x = 1,$$
 [6]

find the two possible values of a.


- (b) Labelling all axes intercepts, sketch the graph of y = 10 6x for $0 \le x \le 2$. [2]
- (c) With reference to the integral in part a and the sketch in part (b), explain why the larger value of a found in part (a) produces a solution for which the actual area under the graph between a and 2a is not equal to 1. State whether the area is greater than 1 or smaller than 1.

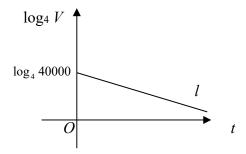
Total: 10

[5]

12. The diagram shows the plan of a school running track. It consists of two straight sections, which are the opposite sides of a rectangle, and two semicircular sections, each of radius r m. The length of the track is 300m and it can be assumed to be very narrow.

- (a) Show that the internal area, Am², is given by the formula $A = 300r \pi r^2$.
- (b) Hence find in terms of π the maximum value of the internal area. [6] You do not have to justify that the value is a maximum.

Total: 1



(Q12 continued)	

13. The value of a car, V in £, is modelled by the equation $V = ab^t$, where a and b are constants and t is the number of years since the car was purchased.

The line l shown in the diagram illustrates the linear relationship between t and $\log_4 V$ for $t \ge 0$. The line l meets the vertical axis at $(0, \log_4(40000))$ as shown. The gradient of l is $-\frac{1}{10}$.

(a) Write down an equation for l.

[2]

(b) Find, in exact form, the values of a and b.

[2]

[4]

(c) With reference to the model, interpret the values of the constant a and b.

(e) After how many years is the value of the car less than £10,000?

[1]

(d) Find the value of the car after 7 years.

[2]

(f) State a limitation of the model.

[1]

(Q13 continued)	

