Pearson Edexcel AS Mathematics 8MA0

Practice Paper A

Time allowed: 2 hours

School: www.CasperYC.club

Name:

Teacher:

How I can achieve better:

- •
- •
- •

Question	Points	Score
1	4	
2	6	
3	6	
4	6	
5	6	
6	6	
7	7	
8	7	
9	8	
10	10	
11	11	
12	11	
13	12	
Total:	100	

Prove that, for all values of x ,	1
	$x^2 + 6x + 18 > 2 - \frac{1}{2}x.$
	2

[3]

2.	(a)	Find an equation of the straight line passing through the points with coordinates $(4, -7)$ and $(-6, 11)$, giving your answer in the form $ax + by + c = 0$, where a, b and c are integers.	
	(b)	The line crosses the x-axis at point A and the y-axis at point B and O is the origin.	[3]
		Find the area of triangle AOB .	
			Total: 6
			10001. 0

[6]

3.	Find, to 1 decimal place, the values of θ in the interval $0 \le \theta \le 180^{\circ}$ for which
	$4\sqrt{3}\sin(3\theta + 20^{\circ}) = 4\cos(3\theta + 20^{\circ}).$

[6]

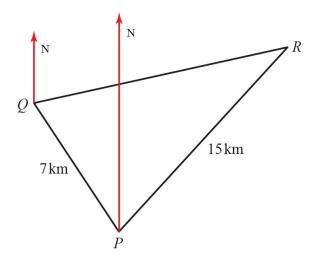
4.	
	$\log_{11}(2x-1) = 1 - \log_{11}(x+4).$
	Find the value of x showing detailed reasoning.

Given that the resultant of the vectors $\mathbf{a} = 2p\mathbf{i} - 5\mathbf{j}$ and $\mathbf{b} = 6\mathbf{i} - 3p\mathbf{j}$ $\mathbf{c} = 4\mathbf{i} - 5\mathbf{j}$,	-
(a) find the value of p ,	
(b) find the resultant of the vectors \mathbf{a} and \mathbf{b} .	
	Total:

6.	The population, P , of bacteria in an experiment can be modelled by the formula $P = 100e^{0.4t}$,	
	where t is the time in hours after the experiment began.	
	(a) Use the model to estimate the population of bacteria 7 hours after the experiment began.	[2]
	(b) Interpret the meaning of the constant 100 in the model.	[1]
	(c) How many whole hours after the experiment began does the population of bacteria first exceed 1 million, according to the model?	[3]
		Total: 6

[7]

and the two poss	sible values of m ,	, giving your a	answers in exa	ct form.	


8.	Given that point A has the position vector $4\mathbf{i} + 7\mathbf{j}$ and point B has the position vector $10\mathbf{i}$	$a+q\mathbf{j},$
	where q is a constant, find	
	(a) the vector \overrightarrow{AB} in terms of q .	[2]
	(b) Given further that $ \overrightarrow{AB} = 2\sqrt{13}$, find the two possible values of q showing detailed reas in your working.	soning [5]
		Total: 7

9.	(a) Find the first four terms, in ascending powers of x , of the binomial expansion of $(2 + px)^9$.	[4]
	(b) Given that the coefficient of the x^3 term in the expansion is -84 .	
	i. Find the value of p .	[2]
	ii. Find the numerical values for the coefficients of the x and x^2 terms.	[2]
	,	Total: 8

10. The diagram shows the position of three boats, P,Q and R. Boat Q is 7km from boat P on a bearing of 327°. Boat R is 15km from boat P on a bearing of 041°.

(a) Find the distance between boats Q and R to 1 decimal place.

[5]

[5]

(b) Find the 3 figure bearing of boat R from boat Q.

Total: 10

[5]

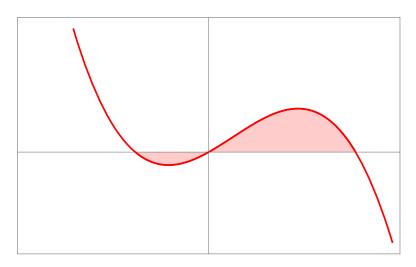
[2]

11. A fish tank in the shape of a cuboid is to be made from $1600~\mathrm{cm^2}$ of glass.

The fish tank will have a square base of side length x cm, and no lid. No glass is wasted.

The glass can be assumed to be very thin.

- (a) Show that the volume, $V \text{cm}^3$, of the fish tank is given by $V = 400x \frac{x^3}{4}$.
- (b) Given that x can vary, use differentiation to find the maximum or minimum value of V.
- (c) Justify that the value of V you found in part b is a maximum.


Total

(Q11 continued)	

12. The graph shows part of the curve C with equation $y = -x^3 + 2x^2 + 8x$.

The curve C crosses the x-axis at the origin O and at points A and B.

(a) Using an appropriate algebraic method, find the coordinates of A and B.

(b) The finite region shown shaded is bounded by the curve C and the x-axis. Use calculus to find the total area of the shaded region.

[3]

[8]

Total: 11

(Q12 continued)	

13.

$$p(x) = 3 - \frac{1}{2}x,$$
 $q(x) = x^2 - 10x - 20.$

- (a) Solve the equation q(x) = 0. [2] Write your answer in the form $a \pm 3\sqrt{b}$ where a and b are integers to be found.
- (b) Sketch the graphs of y = p(x) and y = q(x) on the same set of axes. [4] Label all points where the curves intersect the coordinate axes.
- (c) Use an algebraic method to find the coordinates of any point of intersection of the graphs y = p(x) and y = q(x). [4]
- (d) Write down, using set notation, the set of values of x for which p(x) < q(x). [2]

Total: 12

(Q13 continued \dots)		

