RECURRING DECIMALS

[ESTIMATED TIME: 25 minutes]

GCSE

(+ IGCSE) EXAM QUESTION PRACTICE

1. [1 mark]

Circle the fractions which can be written as recurring decimals.

$$\frac{2}{3}$$

$$\frac{3}{4}$$

$$\frac{4}{5}$$

$$\frac{5}{6}$$

$$\frac{5}{7}$$

$$\frac{7}{8}$$

$$\frac{5}{12}$$

2. [1 mark]

Write these numbers in order of size.

Start with the smallest number.

$$0.5\dot{7}\dot{3}$$

$$0.57\dot{3}$$

3. [2 marks]

Prove algebraically that the recurring decimal $0.3\dot{4}$ has the value $\frac{3}{90}$

4. [2 marks]

Use algebra to show that the recurring decimal $0.3\dot{8} = \frac{7}{18}$

5. [2 marks]

Use algebra to show that the recurring decimal $0.417 = \frac{139}{333}$

Prove algebraically that the recurring decimal $0.3\overline{18}$ can be written as $\frac{7}{22}$

7. [3 marks]

Using algebra, prove that $0.3\dot{2}\dot{7} \times 0.\dot{5}$ is equal in value to $\frac{2}{11}$

x is an integer such that $1 \le x \le 9$ Show that:

(a)
$$0.\dot{x} = \frac{x}{9}$$

(b)
$$0.\dot{0}\dot{x} = \frac{x}{99}$$

(2)

(2)

9.	[3 marks]

y is a whole number such that $1 \le y \le 9$

Show that $0.\dot{3}\dot{y} = \frac{y}{33}$

10. [2 marks]

Rita says:

"I can tell from the denominators that $\frac{17}{40}$ will convert into a terminating decimal but $\frac{17}{70}$ will be recurring."

Explain how Rita can tell from the denominators, whether a fraction will convert into a terminating decimal or a recurring decimal.

(a) Convert the recurring decimal $0.\overline{7}$ to a fraction.

(2)

 $0.0\hat{y}$ is a recurring decimal. y is a whole number such that $1 \le y \le 9$

(b) (i) Write the recurring decimal $0.0\dot{y}$ as a fraction.

(ii) $0.1\dot{y}$ is also a recurring decimal.

Using your answer to part (i), or otherwise, convert the recurring decimal $0.1\dot{y}$ to a fraction.

Give your answer as simply as possible.

(3)