International GCSE Maths

Apart from questions 2b, 10, 13b, 19 where the mark scheme states otherwise the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method

\mathbf{r}						
Q	Working	Answer	Mark	Notes		
1 (a)		5 7 9 11 13 15	1	B1 all numbers must be present with no		
				repeats. Numbers can be in any order		
(b)		5 15	1	B1		
(c)		6 8 12 14 16	1	B1		
				Total 3 marks		

2 (a)		6p(2q-3)	2	B2 If not B2 then award B1 for any correct partial factorisation with 2 factors taken out $(2p \text{ or } 3p \text{ or } 6\ (2\times3))$ outside of the bracket $2p(6q-9) \text{ or } 3p(4q-6) \text{ or } 6(2pq-3p)$ or allow $6p$ and one error inside the bracket eg $6p(2q-a) \text{ or } 6p(b-3)$ oe eg $6p(2q+3)$
(b)	$y + (3y + 7) + (2y - 5) (= 6y + 2) \text{ oe}$ or $56 - 7 + 5 (= 54)$ $y + (3y + 7) + (2y - 5) = 56 \text{ or}$ $"6y + 2" = 56 \text{ oe eg } 6y = 54$ $(y =) \frac{56 - 2}{6} (= 9) \text{ oe}$		4	M1 M2 for y + (3y + 7) + (2y - 5) = 56 or 6y = 54 oe M3 for $(56 - 7 + 5) \div 6 (= 9)$ or $54 \div 6 (= 9)$ M1 for a correct method to find the value of y or the correct value of y
		13		A1 (or for 9 (gold), 34 (silver) and 13 (zinc) seen) dep on sight of $(y =) 9$ SCB2 for 16.6 (17 if rounded 16.6 seen) (if no other marks awarded) SCB1 for $5y + 2 = 56$ oe (if no other marks awarded)

3	1500 + (36 × 450) (= 17 700)		4	M1
	"17 700" – 12 500 (= 5200) oe			M1
	"17 700"			
	or $\frac{17700}{12500}$ (=1.416) oe			
	$\frac{"5200"}{12500}$ (× 100) oe or 0.416 (× 100) or			M1
	$\frac{\cancel{8}'17700''}{\cancel{12500}}' 100\frac{\cancel{0}}{\cancel{0}}(-100) \text{ or } 141.6 (-100)$			
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	41.6		A1 allow 42 from correct working
				Total 4 marks

4 (a)	1 - 0.58 = 0.42 or $100 - 58 = 420.58 + 2x + x = 1$ oe		2	M1
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	0.14		A1 oe eg 14% (must have % sign) or $\frac{7}{50}$ etc SCB1 for an answer of 14 if no other marks are awarded
(b)	250×0.58 oe or $58 + 58 + (58 \div 2)$ oe		2	M1 or for $\frac{145}{250}$
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	145		A1 cao
				Total 4 marks

5	$\pi \times 20 (= 20\pi = 62.8(31))$ oe or $2 \times \pi \times (20 \div 2) (= 20\pi = 62.8(31))$ oe or $0.5 \times \pi \times 20 (= 10\pi = 31.4(15))$ oe or		3	M1 for use of $\frac{1}{2}\pi d$ or πr or πd or $2\pi r$ oe with $d = 20$ or $r = 20 \div 2 (= 10)$
	$3 \times (\text{``62.8''} \div 2) + 20 \div 2 + 20 \div 2 \text{ oe or}$ $1.5 \times (\text{``62.8''}) + 20 \div 2 + 20 \div 2 \text{ oe}$			M1 for a complete method
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	114		A1 114 – 115 SCB1 for awrt 471
				Total 3 marks

6	eg $1 - \frac{1}{6} \frac{\&}{6} = \frac{5 \ddot{o}}{6 \dot{\bar{o}}} \text{ or}$ $1 - 0.16(666) (= 0.83(333) \text{ oe or}$ $100(\%) - 16(.666)(\%) (= 83(.333)(\%)) \text{ oe}$ or $1 - 0.2 (= 0.8) \text{ oe or}$ $100(\%) - 20(\%) (= 80(\%))$	4	M1 Allow eg 1 - 0.16 (= 0.84) (= 84(%)) 1 - 0.17 (= 0.83) (= 83(%)) rounded or truncated
	140, " $\frac{5}{6}$ " (= 168) oe or 140 ÷ "0.83(333)" (= 168) oe eg 140 ÷ 83.33 × 100 (=168) or 136 ÷ "0.8" (= 170) oe eg 136 ÷ 80 × 100 (= 170)		M1 Allow eg 140 ÷ "0.84" = 166(.666) 140 ÷ "0.83" = 168(.674) rounded or truncated
	140, " $\frac{5}{6}$ " (= 168) oe or 140 ÷ "0.83(333)" (= 168) oe and 136 ÷ "0.8" (= 170) oe		M1 Allow eg 140 ÷ "0.84" = 166(.666) 140 ÷ "0.83" = 168(.674) rounded or truncated
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)		A1 Allow –2 Total 4 marks

7	$5^3 \times 7^2 \times 11^4$	B2 Accept $5^3 cdot 7^2 cdot 11^4$ allow $89\ 676\ 125\ \text{with}\ 5^3 imes 7^2 imes 11^4$ seen If not B2 then award B1 for $5^p imes 7^q imes 11^r \text{ with two of}$ $p = 3, q = 2 \text{ and } r = 4$ (or omission of one with others fully correct) or for $89\ 676\ 125\ \text{without}\ 5^3 imes 7^2 imes 11^4 \text{ seen}$ or for $5 imes 5 imes 5 imes 7 imes 7 imes 11 imes 11 imes 11$ or for an answer of $5^3 + 7^2 + 11^4\ \text{or}\ 5^3, 7^2, 11^4$
		Total 2 marks

8 (a)	$8x-3x \ge -10+4 \text{ or}$ $5x \ge -6 \text{ or}$ $10-4 \ge -8x+3x \text{ or}$ $6 \ge -5x$		2	M1 for x terms on one side and numbers on the other. Condone = rather than \leq or any other sign for this mark.
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$x^3 - \frac{6}{5}$		A1 oe eg - $\frac{6}{5}$ £ x Must have correct sign on answer line (sight of correct answer in working space and just -1.2 on answer line gains M1 only)
(b)		$y \ge 2$ $x \le 7$ $y \le x$	3	B1 oe eg $y-2 \ge 0$ allow > in place of \ge B1 oe eg $x-7 \le 0$ allow < in place of \le B1 oe eg $y-x \le 0$ allow < in place of \le
				SCB1 for $y=2$, $x=7$ and $y=x$ SCB2 for $y \le 2$, $x \ge 7$ and $y \ge x$ or $y < 2$, $x > 7$ and $y > x$ Allow < in place of \le or vice versa Total 5 marks

9	(a)		0.000 587	1	B1 allow 0.000 587(000) or .000 587
	(b)		8.4×10^7	1	B1 allow 8.4(000) × 10 ⁷
	(c)	$8.5 \times 10^{10} \div 1.47 \times 10^{9} (= \frac{8500}{147}) \text{ or}$ $85\ 000\ 000\ 000 \div 1\ 470\ 000\ 000\ (= \frac{8500}{147})$		2	M1
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	57.8		A1 oe eg 5.78 × 10 awrt 57.8 allow 58 or 5.8 × 10 with correct working seen
					Total 4 marks

10	$\tan 40 = \frac{8}{(AD)}$ or $\frac{(AD)}{\sin(90-40)} = \frac{8}{\sin 40}$ oe or		5	M1
	$(AC =) \frac{8}{\sin 40} (= 12.4(457)$			
	(D = foot of the perpendicular line)			
	$(AD =) \frac{8}{\tan 40} (= 9.5(3))$ or			M1
	$(AD =)$ $\frac{8}{\sin 40} \times \sin (90 - 40) (= 9.5(3))$ oe or			
	$(AD =) \sqrt{12.4^{2} - 8^{2}} = \sqrt{90.8(977)}$ (= 9.5(3)) oe or			
	$(BC^2 =)$ "12.4" ² + 22 ² - 2 × "12.4"×22 × cos 40 (= 219.4) oe			
	(DB =) 22 - ``9.5(3)'' (= 12.4(659 = 12.5) or			M1
	$(BC =) \sqrt{12.4^2 + 22^2 - 2 \times 12.4} \times 22 \times \cos 40 = \sqrt{219.4} = 14.8$) oe or			
	$(BC =) \sqrt{8^2 + (22 - 9.5(3))^2}$ (= 14.8) oe			
	$\tan x = \frac{8}{"12.5"}$ or $\cos x = \frac{"12.5"}{"14.8"}$ or $\sin x = \frac{8}{"14.8"} (\times \sin 90)$ oe			M1
	or $\sin x = \frac{\sin 40}{14.8}$ × "12.4" oe or $\cos x = \frac{22^2 + 14.8^2 - 12.4}{2 \times 22}$ oe			
	Working required	32.7		A1 Allow 32.3 – 32.8
				dep on a correct method shown
				Total 5 marks

11	$\frac{9x}{12x} + \frac{2(5-x)}{12x} \text{ oe or or } \frac{3(6x)}{24x} + \frac{4(5-x)}{24x} \text{ oe or }$ $\frac{3(6x)}{4(6x)} + \frac{4(5-x)}{4(6x)} \text{ oe or or } \frac{18x}{24x} + \frac{20-4x}{24x} \text{ oe or }$ $\frac{3 \times 3x + 2(5-x)}{12x} \text{ oe}$		3	M1 for two correct fractions with common denominator with the intention to add or a single correct fraction
	$\frac{9x+10-2x}{12x} \text{ oe or } \frac{18x+20-4x}{24x} \text{ oe or } \frac{14x+20}{24x} \text{ oe or } \frac{14x+20}{24x} \text{ of } 14x+$			M1 for a correct numerator over a single denominator with brackets expanded and correct signs $Allow \frac{7x}{12x} + \frac{10}{12x}$
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$\frac{7x+10}{12x}$		A1 oe $\frac{10+7x}{12x}$
				Total 3 marks

12 (a)	$ \begin{vmatrix} x & -2 & -1 & 0 & 1 & 2 \\ y & -1 & 3 & 1 & (-1) & 3 $	Correct y values	2	B2 for all correct (B1 for 2 or 3 correct)
(b)			2	M1 ft their table dep on B1 scored in (a) for 4 or 5 points plotted correctly (tolerance within or on the circles on the overlay)
Tol				A1 for a fully correct graph – points plotted correctly (within or on the circles on the overlay) and intention to join with a smooth curve (be generous if intention is clearly a smooth curve through all points) Ignore curve drawn for $x < -2$ and $x > 2$
(c)		D	1	B1
				Total 5 marks

13	(a)		25	1	B1 Allow 25 – 25.5
	(b)	80 – [74, 76] (= [4, 6]) or		3	M1 Allow a clear method to read off from
		80 – (their value from a correct method)			cf diagram at 50 seconds and subtract this
		"[74.76]"			value from 80 or
		$\frac{"[74,76]"}{90} \times 100 (= [92.5,95])$			read the value and use a method to find
		80			this as a percentage of 80
		$\frac{"[4,6]"}{80} \times 100 \ (=[5,7.5]) \ \text{oe or}$			M1ft if previous M1 awarded
		$100 - \left(\frac{"[74, 76]"}{80} \times 100\right)$ oe or			
		(4, 6)" ÷ 0.8 oe			
		Working required	6.25		A1 dep on M1
					Allow range $5 - 7.5$
			_		Total 4 marks

14	$(AOC =)180 - (2 \times 52) (= 76)$		3	M1 must not be contradicted on diagram
	Working not required, so correct answer scores	38		A1 If labelled on the diagram then it must
	full marks (unless from obvious incorrect			be in the correct place
	working)			
		2 correct reasons		B1 dep on M1 for at least 2 valid reasons for their method including a correct circle property
				angle at the centre is 2 × (double/twice) angle at circumference or angle at circumference is ½ (half) angle at centre and one from (i) Base angles in an isosceles triangle (are equal) (ii) Angles in a triangle sum to 180° or angles in a triangle sum to 180°
				Total 3 marks

14	tangent drawn at A with a right angle shown		3	M1 for a correct tangent drawn with right
ALT	or			angle shown or
	38° shown between the line AC and the			38° shown between the line AC and the
	tangent at A			tangent at A
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	38		A1 If labelled on the diagram, then it must be correct
		38 and correct reason		B1 dep on M1 for 38 and <u>alternate</u> <u>segment</u> theorem and angle between <u>radius</u> /diameter and <u>tangent</u> = 90
				Total 3 marks

15	3nx-4x=3p+n		3	M1 for removing the denominator and
	-			expanding in a correct equation
	3nx-n=3p+4x or			M1ft for gathering terms in <i>n</i> on one side
	-4x-3p=n-3nx			and other terms the other side in an equation ft their equation dep on 2 terms in <i>n</i> and 2 other terms
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$n = \frac{3p + 4x}{3x - 1}$		A1 oe $n = \frac{-3p - 4x}{1 - 3x}$ oe (must see " $n =$ " on answer line or in working)
				Total 3 marks

16	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 3 \times 4x^2 - 8 \ (= 12x^2 - 8)$		4	B2 for $3 \times 4x^2 - 8$ or $12x^2 - 8$ (with no other terms) (B1 for one term, ie $3 \times 4x^2$ or $12x^2$ or -8)
	$"12x^2 - 8" = \frac{1}{3}$			M1 for equating their initial derivative with the given gradient. Derivative must be a quadratic (dep on B1)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$\pm \frac{5}{6}$		Aloe Ignore y values Allow $\pm 0.83(333)$ or $\pm \sqrt{\frac{25}{36}}$ oe
				Total 4 marks

17	24 ÷ 20 (= 1.2) or a correct value on the FD scale or 10 small squares = 1 orange or 25 small squares (1 large square) = 24 ÷ 9.6 = 2.5 oranges oe or 9 or 18 or 27 correctly assigned or $\frac{3x}{4} + \frac{y}{3} \text{ where } x \text{ is their frequency of } 3^{\text{rd}} \text{ bar}$		3	M1 for use of area to represent frequency or one correct frequency from the $\frac{1}{3}$ of 4 th bar (9) or $\frac{2}{3}$ of 4 th bar (18) or The 4th bar (27) [NOT 3 rd bar = 44] or
	and y is their frequency of 4 th bar			A method to show the student is finding $\frac{3}{4}$ of 3 rd bar + $\frac{1}{3}$ of 4 th bar (frequencies to be seen on diagram or identified in working)
	eg $(15 \times 2.2) + (5 \times 1.8)$ oe or 33 + 9 or $44 + 27 - 11 - 18$ or $(330 + 90) \div 10$ oe or $(13.2 + 3.6) \times 2.5$ oe			M1 for a complete method
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	42		A1 Total 3 marks

18	(angle $ABC =)54 + (180 - 132) (= 102)$		5	M1 for finding angle ABC
	$(AC^2 =)3.6^2 + 8.4^2 - 2 \times 3.6 \times 8.4 \times \cos[102]$			M1 for applying the cosine rule correctly
				ft <i>their</i> 102 provided less than 180 and
				not 90
	$(AC =)\sqrt{3.6^2 + 8.4^2 - 2 \times 3.6 \times 8.4 \times \cos[102]}$			M1 for finding AC
				ft <i>their</i> 102 provided less than 180 and
	or $\sqrt{96.094}$ or $9.8(02)$			not 90
	$([9.8]+8.4+3.6)\div 6 (=3.63(3))$ or			M1 dep on previous M1M1 for finding
				the time taken to complete the journey
	$21.8(02) \div 6 (= 3.63(3))$ oe			(may be done in parts)
	Working not required, so correct answer	3 hours and		A1
	scores full marks (unless from obvious	38 minutes		Allow 3 hours and (37 – 38) minutes
	incorrect working)			
				Total 5 marks

19	a=3 a	$\operatorname{nd} d = 4$		6	M1 for a and d (can be embedded in the formula for S_n)
	$\frac{n}{2}[2(3)+(n-1)4] = 7260 \text{ or}$	$\frac{n}{2}(3+x) = 7260$ and			M1 Allow $n = x$
	$\frac{n}{2}(2+4n) = 7260 \text{ oe}$	x = 3 + (n-1)4			
	eg $4n^2 + 2n = 14520$ oe $2n^2 + n - 7260 (= 0)$ oe $8n^2 + 4n - 29040 (= 0)$ oe	eg $x^2 + 4x - 58077 = 0$ oe $x^2 + 4x = 58077$			M1ft dep on previous M1 for forming a three term quadratic in any form of $ax^2 + bx + c$ (= 0) where at least 2 coefficients (a or b or c) are correct
	eg $(2n+121)(n-60)(=0)$ eg $(n=) \frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times -7260}}{4}$	eg (x-239)(x+243)(=0) eg $(x =) \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times -58077}}{2}$			M1ft dep on previous M1 for a method to solve their 3 term quadratic using any correct method Allow one sign error and some
	eg	eg $(x+2)^2 - (2)^2 = 58077$			simplification – allow as far as eg $\frac{-1 \pm \sqrt{1 + 58080}}{4} \text{ or } \frac{-4 \pm \sqrt{16 + 232308}}{2}$
	(n =) 60 (and (n =) -60.5)	(x =) 239 (and $(x =) -243)$	220		A1 dep on M3 Ignore negative values
	Working required		239		A1 cao dep on M3 SCB2 if not shown clear algebraic working but give an answer of 239 (with method shown involving $a = 3$ and $d = 4$) as question asks for algebraic working. 239 alone gains zero marks
					Total 6 marks

20	$\sqrt{\frac{49}{121}} \left(= \frac{7}{11} = 0.63(63) \right)$		4	M1 Accept 0.63(63) or 63(.6363)% rounded or truncated
	$1 - \frac{7}{11} \left(= \frac{4}{11} = 0.36 (36) \right)$			M1 Accept 0.36(36) or 36(.3636)% rounded or truncated
	$2 \times \frac{7}{11} \times \frac{4}{11} \text{ or } 1 - \left(\frac{49}{121} + \left(\frac{4}{11}\right)^2\right) \text{ or}$ $2 \times (0.63) \times (0.36) \text{ or}$ $1 - (0.40(49) + ((0.36)^2)$			M1 for a complete method
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	56 121		A1 oe Allow 0.46(280) or 46(.280)%
				Total 4 marks

21	$(FE =) 28 \sin 30 (= 14)$ or		5	M1 for a method to find FE or DE
	$(FE =) 28 \cos 60 (= 14) \text{ or}$			
	$(DE =) 28 \cos 30 (= 14\sqrt{3} = 24.2(48))$ or			
	$(DE =) 28 \sin 60 (= 14\sqrt{3} = 24.2(48))$			
	$(FE =) 28 \sin 30 (= 14) \text{ or}$			M1 for a method to find FE and DE (can now use their FE or DE found for
	$(FE =) 28 \cos 60 (= 14) \text{ or}$			first M1)
	$(FE =) \sqrt{28^2 - "24.2"} (= \sqrt{196} = 14)$			
	and			
	$(DE =) 28 \cos 30 (= 14\sqrt{3} = 24.2(48))$ or			
	$(DE =) 28 \sin 60 (= 14\sqrt{3} = 24.2(48))$ or			
	$(DE =)\sqrt{28^2 - "14"^2} \left(= \sqrt{588} = 14\sqrt{3} = 24.2(48) \right)$			
	$(AF =)\sqrt{53^2 - 28^2} \left(= \sqrt{2809 - 784} = \sqrt{2025} = 45 \right)$			M1 (indep) for finding AF
	$\frac{1}{2}$ × "14" × "14 $\sqrt{3}$ " × "45" oe or			M1 for finding the volume of the prism
	$\frac{1}{2}$ × "14" × "24.2" × "45"			
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	7638		A1 allow in the range 7623 – 7639
	(uniess from ouvious incorrect working)			Total 5 marks

22	$\frac{-10-0}{8-0} \left(= -\frac{10}{8} = -\frac{5}{4} \right)$ oe		6	M1 for the gradient of the radius
	$\left[-\frac{5}{4}\right] \times m = -1$ oe			M1ft for finding the gradient of the line
	[4] "			perpendicular to the gradient of <i>their</i> radius
	or			for the gradient of L
	$(m=)"\frac{4}{5}"$ oe			
	$-10 = \frac{4}{5}(8) + c \text{ or } (c =) -\frac{82}{5} = -16.4$			M1ft for substitution to find ' c ' which is the y intercept (R)
	or			
	$y10 = \frac{4}{5}(x - 8)$			
	$0 = \frac{4}{5}x + -\frac{82}{5}$ oe			M1ft for substitution to find x intercept (Q)
	or			
	$10 = \frac{4}{5}(x-8)$ oe			
	or			
	$(x=)\frac{41}{2} = 20.5$			
	$\sqrt{("-16.4")^2 + ("20.5")^2}$ or			M1ft for a complete method to find <i>RQ</i>
	$\sqrt{("16.4")^2 + ("20.5")^2}$			
	Working not required, so correct answer	26.3		A1 allow 26.2 – 26.64
	scores full marks (unless from obvious			
	incorrect working)			Total Committee
				Total 6 marks

22 ALT	(radius =) $\sqrt{8^2 + 10^2}$ (= $2\sqrt{41} = 12.8$)	6	M1 for finding the radius of the circle
	$\tan^{-1}\left(\frac{10}{8}\right) (=51.3)$		M1 for finding the angle between the <i>x</i> -axis and the radius
	or $\tan^{-1}\left(\frac{8}{10}\right) (=38.7)$		or the angle between the <i>y</i> -axis and radius
	$(x =) \frac{"12.8"}{\cos"51.3"} (= 20.4(7205)) \text{ or}$		M1ft For finding one of the lengths $x (OQ)$ or $y (OR)$ or PQ or PR
	$(y =) \frac{"12.8"}{\cos"38.7"} (=16.4(0120))$		
	(PQ =)"12.8"×tan"51.3"(=15.9(7701)) or		
	(PR =)"12.8"×tan"38.7"(=10.2(5473))		
	$(x =) \frac{"12.8"}{\cos"51.3"} (= 20.4(7205))$ and		M1ft finding both of the lengths x and y or
	$(y =) \frac{"12.8"}{\cos"38.7"} (=16.4(0120))$		both of the lengths PQ and PR
	(PQ =)"12.8"×tan"51.3"(=15.9(7701)) and		
	(PR =)"12.8"×tan"38.7"(=10.2(5473))		
	$\sqrt{("20.4")^2 + ("16.4")^2}$ or		M1ft for a complete method to find RQ
	15.9(7701) + 10.2(5473)		
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	26.3	A1 allow 26.2 – 26.64
			Total 6 marks

23	$\sqrt{\frac{7776}{486}} \text{ or } \sqrt{16} \text{ or } 4 \text{ oe or}$ $\sqrt{\frac{486}{7776}} \text{ or } \sqrt{\frac{1}{16}} \text{ or } \frac{1}{4} \text{ oe}$ $8^{x} = "\left(\sqrt{\frac{7776}{486}}\right)^{3} " \times 2^{x+4} \text{ oe eg}$ $8^{x} = 4^{3} \times 2^{x+4} \text{ oe}$ or $\frac{1}{8^{x}} = "\left(\sqrt{\frac{486}{7776}}\right)^{3} " \times \frac{1}{2^{x+4}} \text{ oe}$	Alternative for M2 a correct equation linking area and volume $\left(\frac{486}{7776}\right)^3 = \left(\frac{2^{x+4}}{8^x}\right)^2 \text{ oe or}$ $\left(\frac{7776}{486}\right)^3 = \left(\frac{8^x}{2^{x+4}}\right)^2 \text{ oe}$	5	M1 for a correct linear scale factor M1 for setting up a correct equation for volume
	eg $2^{3x} = 2^{6} \times 2^{x+4} \text{ or } (4^{\frac{3}{2}})^{x} = 4^{3} \times 4^{\frac{1}{2}(x+4)}$ $\frac{1}{2^{3x}} = \frac{1}{2^{6}} \times \frac{1}{2^{x+4}} \text{ oe or}$ $3x = 6 + x + 4 \text{ oe or}$ $x = 5$	$\frac{1}{2^{12}} = \frac{2^{2x+8}}{2^{6x}} \text{ oe or}$ $2^{12} = \frac{2^{6x}}{2^{2x+8}} \text{ oe or}$ $12 = 6x - 2x - 8 \text{ oe or}$ $x = 5$		M1 for a correct equation using just powers of 2 or powers of 4 (or 8 or 16) or a correct linear equation in x or the correct value for x
	$3^{5} \div 4 \text{ oe or}$ $3^{5} \times \frac{1}{4} \text{ oe}$			M1 a correct calculation for the height of solid B
			60.75	A1 oe accept 60.8 or 61 (from correct working)
				Total 5 marks

24 (a)	(a =) -4	2	B1 for (<i>a</i> =) -4
	(b =) 6		B1 for $(b =) 6$
(b)	(p =) 3	2	B1 for $(p =) 3$
	(q =) 45		B1 for $(q =) 45$
			Total 4 marks