Internationa	l GCSE Maths			
Apart from q	uestions 1, 2, 4b, 5, 8, 12d, 19, 21, 23 (where the man	k scheme state	es otherw	ise) the correct answer, unless clearly obtained from
an incorrect r	working	Answor	Mark	Notos
1	eg $2 \times 2 \times 150$ or $3 \times 5 \times 40$ or $2 \times 3 \times 100$ or $5^2 \times 24$ or eg 600 2×300 2×300 2×300 150	Answei	3	M1 for at least 2 correct stages in prime factorisation which give 2 prime factors – may be in a factor tree or a table or listed eg 2, 2, 150 (see LHS for examples of the amount of work needed for the award of this mark, allow no more than one mistake ft (eg one mistake with 2 prime factors ft: $600 = 200 \times 30 = 2 \times 100 \times 5 \times 6$))
	eg $2 \times 2 \times 2 \times 3 \times 5 \times 5$ $2 \times 2 \times 3 \times 5 \times 5$ $2 \times 3 \times 5 \times 5$ 3×75 5×25 5×5 5×5			M1 for 2, 2, 2, 3, 5, 5 (ignore 1s) (may be a fully correct factor tree or ladder)
	Working required and note that the answer must be given as a product of powers of prime factors	$2^{\overline{3}} \times 3 \times 5^{2}$		A1 dep on M2 can be any order (allow $2^3 \cdot 3 \cdot 5^2$)
				Total 3 marks

Question	Working	Answer	Mark	Notes	
Question 2	Working eg $\frac{18}{7}$ and $\frac{9}{8}$ oe eg $\frac{18}{7} \times \frac{8}{9}$ oe or oe $\frac{144}{56} \div \frac{63}{56}$ eg $\frac{18}{7} \times \frac{8}{9} = \frac{144}{63} = \frac{16}{7} = 2\frac{2}{7}$ or $\frac{18}{7} \times \frac{8}{9} = \frac{144}{63} = 2\frac{18}{63} = 2\frac{2}{7}$ or $\frac{18^2}{7} \times \frac{8}{9^1} = \frac{16}{7} = 2\frac{2}{7}$ or $\frac{18}{7} \div \frac{9}{8} = \frac{144}{56} \div \frac{63}{56} = \frac{144}{63} = \frac{16}{7} = 2\frac{2}{7}$	Answer	Mark 3	Notes1both fractions expressed as improper fractions, inmay be equivalent to those given eg $\frac{36}{14}$ or $\frac{27}{24}$ orinvert $\frac{9}{8}$ and show multiplication - as shown imark is then implied.1or for both fractions expressed as equivalent fradenominators that are a common multiple of 7 a1Dep on M2 for conclusion to $2\frac{2}{7}$ from correctsight of the result of the multiplication or divisionseen and then cancelled or correct cancelling primultiplication to $\frac{16}{7}$ orin $2\frac{2}{7}$ 16 (or the first for the fi	no need for \div or \times etc. A student could in the 2nd M1, this ctions with and 8 eg $\frac{144}{56} \div \frac{63}{56}$ working – either on eg $\frac{144}{63}$ must be ior to the
	or correct working to $\frac{16}{7}$ and writing $2\frac{2}{7} = \frac{16}{7}$			writing $2\frac{2}{7} = \frac{16}{7}$ (maybe on first line of workin working as far as LHS $=\frac{16}{7}$ NB: use of decimals scores no marks	ng) and correct
					l otal 5 marks

Question	Working	Answer	Mark	Notes
3	180 + 149 or 360 - 31		2	M1
	<i>Working not required, so correct answer scores full marks</i>	329		A1
				Total 2 marks

Questi	on	Working	Answer	Mark	Notes
4	(a)(i)	other seen orders of letters: a, b, d, e, i, l, n, r, z b, r, I, a, e, z, l, n, d	b, r, a, z, i, l, e, n, d	1	B1 no repeats, letters can be in any order. Condone capital letters rather than lower case letters. (no need for commas)
	(ii)		b, z	1	B1 No repeats, letters can be in any order. Condone capital letters. (no need for a comma)
	(b)		correct explanation that shows they know the meaning of intersection and empty set	1	B1 eg letter 'a' is in both sets $B \cap K = \{a\}$ Set <i>B</i> and set <i>K</i> have an element (or letter) in common. There is a letter that is in set <i>B</i> and in set <i>K</i> There is an intersection so it isn't the null set There is a letter in common (do not allow 'letters' or 'elements' (plural) in common) (If students mention the letter that is in common, it must be the correct one (ie a))
					Total 3 marks

5 Angle <i>BBC</i> or <i>ECB</i> = (180 - 44) ÷ 2 (= 68) 5 M1 Could be seen on diagram Angle <i>GBC</i> = 180 - "68" (= 112) or Angle <i>GBC</i> = *68" + 44 (= 112) or Angle <i>BGH</i> = "68" (same as <i>EBC</i>) Angle <i>ABE</i> = 180 - "68" (and Angle <i>BGF</i> = "112" or Angle <i>ABG</i> = "68" or Angle <i>BGF</i> = 180 - "68" (=112) M1 for a method to as far as one step away from working out Angle <i>JGH</i> or at the same point on a straight line with <i>JGH</i>) <i>Working not required, so correct angle scores 3 marks</i> (<i>unless from obvious incorrect working</i>) 112 A1 Could be seen in correct place on diagram <i>Working not required, so correct angle scores 3 marks</i> (<i>unless from obvious incorrect working</i>) 112 A1 Could be seen in correct place on diagram <i>Working not required, so correct angle scores 3 marks</i> (<i>unless from obvious incorrect working</i>) 112 A1 Could be seen in correct place on diagram <i>Working not required, so correct angle scores 3 marks</i> (<i>unless from obvious incorrect working</i>) 112 A1 Could be seen in correct place on diagram <i>Working not required, so a correct angle or shown</i> on the diagram in the correct ongle or shown on the diagram in the correct position. (eg just seeing 68 in working without a label is not sufficient for the award of a mark for angle <i>EBC</i>) B2 for correct angles are equal. <i>Corresponding angles are equal.</i> <i>Corresponding angles are equal.</i> <i>Corresponding angles are equal.</i> <i>Corresponding angles are equal.</i> <i>Alleica</i> angles sum to 180° (or co-interior angles) <i>Angles at a point</i> (or <u>full tum</u>) add up to	Question	Working	Answer	Mark		Notes
Angle $GBC = 180 - "68" (= 112)$ or Angle $GBL = "68" (= 112)$ or Angle $GBL = "68" (= 112)$ and Angle $BGF = "112"$ or Angle $ABE = 180 - "68" (= 112)$ and Angle $BGF = "112"$ or Angle $ABG = "68"$ and Angle $BGF = "68"$ or Angle $FGJ = "68"$ or Angle $BGF = 180 - "68" (= 112)$ M1for a method to as far as one step away from working out Angle JGH (an angle corresponding or vertically opposite to JGH or at the same point on a straight line with JGH)Working not required, so correct angle scores 3 marks (unless from obvious incorrect working)112A1Could be seen in correct place on diagram. (the award of this mark also implies the previous M1)Working not required, so correct angle scores 3 marks (unless from obvious incorrect working)112A1Could be seen in correct place on diagramNB: reasons must include the underlined words Accept \angle for angle(s) and \sqcup for triangleB2for correct answer with full reasons for their method cg isosceles triangle (or 2 equal sides, 2 equal angles) Angles in a triangle sum to 180° or angles in a triangle Angles on a straight line sum to 180° Exterior angles. Vertically opposite angles are equal. Vertically opposite angles are equal. Corresponding angles are equal. Alternate angles are apoint) (B1 for one correct reason appropriate to their method, de no m(1))	5	Angle <i>EBC</i> or <i>ECB</i> = $(180 - 44) \div 2 (= 68)$		5	M1	Could be seen on diagram
Working not required, so correct angle scores 3 marks (unless from obvious incorrect working) 112 A1 Could be seen in correct place on diagram NB: reasons must include the underlined words Accept ∠ for angle(s) and □ for triangle B2 for correct answer with full reasons for their method eg isosceles triangle (or 2 equal sides, 2 equal angles) Angles in a triangle For all angles: They must be clearly stated as the correct angle or shown on the diagram in the correct position. B2 for correct answer with full reasons for their method eg isosceles triangle (or 2 equal sides, 2 equal angles) Angles in a triangle Sufficient for the award of a mark for angle EBC) Angles on a straight line sum to 180° Exterior angle is equal to the two opposite interior angles. Vertically opposite angles are equal. Corresponding angles are equal. Alternate angles are equal. Alternate angles are equal. Alternate angles at a point (B1 for one correct reason appropriate to their method, dep on M1)		Angle $GBC = 180 - "68" (= 112)$ or Angle $GBC = "68" + 44 (= 112)$ or Angle $BGH = "68" (same as EBC)$ Angle $ABE = 180 - "68" (= 112)$ and Angle $BGF = "112"$ or Angle $ABG = "68"$ and Angle $BGH = "68"$ or Angle FGJ = "68" or Angle $BGF = 180 - "68" (= 112)$			M1	for a method to as far as one step away from working out Angle <i>JGH</i> (an angle corresponding or vertically opposite to <i>JGH</i> or at the same point on a straight line with <i>JGH</i>) Could be seen on diagram. (the award of this mark also implies the previous M1)
 NB: reasons must include the underlined words Accept ∠ for angle(s) and □ for triangle For all angles: They must be clearly stated as the correct angle or shown on the diagram in the correct position. (eg just seeing 68 in working without a label is not sufficient for the award of a mark for angle EBC) B2 for correct answer with full reasons for their method eg isosceles triangle (or 2 equal sides, 2 equal angles) Angles in a triangle angles in a triangle sum to 180° Exterior angle in a triangle is equal to the two opposite interior angles. Vertically opposite angles are equal. Corresponding angles are equal. Alternate angles are equal. A		Working not required, so correct angle scores 3 marks (unless from obvious incorrect working)	112		A1	Could be seen in correct place on diagram
Total 5 marks		NB: reasons must include the underlined words Accept \angle for angle(s) and \sqcup for triangle For all angles: They must be clearly stated as the correct angle or shown on the diagram in the correct position. (eg just seeing 68 in working without a label is not sufficient for the award of a mark for angle <i>EBC</i>)			B2	for correct answer with full reasons for their method eg isosceles triangle (or 2 equal sides, 2 equal angles) Angles in a triangle sum to 180° or angles in a triangle Angles on a straight line sum to 180° <u>Angles</u> on a straight line sum to 180° <u>Exterior</u> angle in a triangle is equal to the two opposite interior angles. Vertically opposite angles are equal. Vertically opposite angles are equal. Corresponding angles are equal. <u>Alternate</u> angles are equal <u>Allied</u> angles sum to 180° (or co-interior angles) Angles at a point (or full turn) add up to 360° (or angles at a point) (B1 for one correct reason appropriate to their method, dep on M1)

Question	Working	Answer	Mark	N	otes
6	$19.35 \div (4+5) (= 2.15)$		4	M1	M2 for $\frac{5}{9} \times 19.35 (= 10.75)$
	"2.15" × 5 (= 10.75)			M1	
	$\frac{\frac{12 - "10.75"}{12} \times 100 \text{ oe}}{100 - \frac{10.75 \times 100}{12}} \text{ oe}$			M1	
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	10.4		A1 accept $10.4 - 10.42$ SCB1 for $\frac{5}{9} \times 12(=$	2 6.66)oe
					Total 4 marks

Question	Working	Answer	Mark		Notes
7	$\sin 42 = \frac{6.5}{x} \text{ or } \frac{x}{\sin 90} = \frac{6.5}{\sin 42}$ or $\cos 48 = \frac{6.5}{x}$ [where $48 = 180 - 90 - 42$]		3	M1	or use of tan to find the horizontal side and then a correct first step in Pythagoras' theorem ie [base =] $\frac{6.5}{\tan 42}$ (= 7.21) and [r^2 =] 6.5 ² + "7.21" ²
	$[x =] \frac{6.5}{\sin 42} \text{ or } \frac{6.5 \sin 90}{\sin 42}$ or $[x =] \frac{6.5}{\cos 48}$ [where $48 = 180 - 90 - 42$]			M1	or complete method using Pythagoras $[x =]\sqrt{6.5^2 + "7.21"^2}$ (If students give this statement with nothing before it they gain M2)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	9.7		A1	accept 9.7 – 9.72
					Total 3 marks

Question	Working		Answer	Mark	Notes
8	eg $10a + 4c = 20$ + $2a - 4c = 7$ eg $[c = \frac{10 - 5a}{2}]$ oe $2a - 4\left(\frac{10 - 5a}{2}\right) = 7$ oe	eg $10a + 4c = 20$ - 10a - 20c = 35 eg $[a = \frac{7 + 4c}{2}]$ oe $5\left(\frac{7 + 4c}{2}\right) + 2c = 10$ oe		3	M1 multiplication of one or both equation(s) with correct operation selected (allow one arithmetic error) (if + or – is not shown then assume it is the operation that at least 2 of the 3 terms have been calculated for) or correct rearrangement of one equation with substitution into second
	eg 5 × "2.25" + 2 c = 10 or 2 × "2.25" - 4 c = 7	eg $5a + 2 \times "-0.625" = 10$ or $2a - 4 \times "-0.625" = 7$			M1 (dep on previous M1 but not on a correct first value) correct method to find second unknown – this could be a correct substitution into one of the equations given or calculated or starting again with the same style of working as for the first method mark
	Working required		a = 2.25 c = -0.625		A1 oe eg $a = \frac{9}{4}$, $c = -\frac{5}{8}$ for both solutions dependent on first M1
					Total 3 marks

Question		Working	Answer	Mark		Notes
9 (i))	$(x \pm 6)(x \pm 4)$		2	M1	or $(x + a)(x + b)$ where $ab = -24$ or $a + b = 2$
		Working not required, so correct answer scores full marks	(x+6)(x-4)		A1	
(ii	i)	Answer must come from the factors in (i) as the questions says 'Hence solve'	-6, 4	1	B1ft	Must follow through from their factors in (i), so even if the answers 4 and –6 are given the mark can only be awarded if it follows from the factorisation in (i) (dep on 2 factors)
						Total 3 marks
					NB:	Some students may show the whole of their working in the space for (i) or (ii). Please award the marks for (i) and (ii) so long as there is no ambiguity.

Question	Working	Answer	Mark		Notes
10	$11.2^2 - 7.4^2$ (= 70.68) or $[x =]\cos^{-1}\left(\frac{7.4}{11.2}\right)$ (= 48.64) or		5	M1	A correct first stage to finding the perpendicular height of the triangular cross section
	$[y =]\sin^{-1}\left(\frac{7.4}{11.2}\right) (= 41.35) \text{ or } \sin^{-1}\left(\frac{7.4\sin 90}{11.2}\right)$				
	eg $\sqrt{11.2^2 - 7.4^2}$ (= 8.407) or			M1	oe eg $h = \frac{11.2 \sin^2 48.64}{\sin 90}$
	$[h =] \sin'' 48.64'' \times 11.2$ or $\tan'' 48.64'' \times 7.4 (= 8.407)$ or 7.4				
	$[h =]\cos^{4}(41.35) \times 11.2 \text{ or } \frac{1}{\tan^{4}(41.35)} (=8.407)$				
	eg 7.4 × "8.407" ÷ 2 (= 31.10) or 7.4 × "8.407" × 15 (= 933.19)			M1	for method to find area of cross section or volume of cuboid
	eg "31.10" × 15 (= 466.59) or "933.19" ÷ 2 (= 466.59)			M1	complete method to find volume of the prism
	<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	467		A1	accept 466 – 467 SCB2 (if M0 awarded) for
					$0.5 \times 7.4 \times \sqrt{11.2^2 + 7.4^2} \times 15 \ (= 745)$
					or SCB1 (if M0 awarded) for
					$7.4 \times \sqrt{11.2^2 + 7.4^2} \times 15 \ (= 1490) \ \text{or}$
					$0.5 \times 7.4 \times \sqrt{11.2^2 + 7.4^2}$ (=49.6) or
					$0.5 \times 7.4 \times 11.2 \times 15 (= 621.6)$ or 622
					Total 5 marks

Question	Working	Answer	Mark		Ν	Notes
11(a)	eg 100 + 24 (=124 [%]) or 1 + 0.24 (= 1.24) or 180000		3	M1		
	$\frac{100000}{124}$ (=1451.6)					
	eg $180000 \div 1.24$ $180000 \div 124 \times 100 \text{ or } 180000 \times 100 \div 124 \text{ or}$			M1	for a complete m	ethod
	Working not required, so correct answer scores full marks (unless from obvious incorrect working) NB: this question is one where students could	145 000		A1	accept 145 000 – (if a correct answ then rounded inc marks)	145200 ver is seen in working and orrectly, award full
	misread the number of zeros(eg one too many or one too few) in the question, up to M2 could be awarded if a correct method is seen with this misread				(if no marks awa 223 200 or 223 0	rded, SCB1 for 000)
(b)	for 0.018 × 120 000 oe or 2160 or 1.018 × 120 000 oe or 122 160		3	M1	For finding 1.8% or 101.8% of the value	OR M2 for 120000 × 1.018 ³ or 120000 × 1.018 ⁴ or 128876.09
	1.018 × "122 160" (= 124 358.88) oe and 1.018 × "124 358.88" (= 126 597.34) oe			M1	for completing the method	(M1 for 120000 × 1.018 ² or 124358.88)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	127000		A1	or 126597 – 126 (if a correct answ then rounded inc	600 ver is seen in working and orrectly, award full
	misread the number of zeros in 120 000 (eg one too many or one too few) in the question, up to M2 could be awarded if a correct method is seen with this misread				SC: if no other n for 1.054×1200 (accept (1 + 0.01 throughout)	narks gained award M1 000 oe or 126480 or 6480 8) as equivalent to 1.018
						Total 6 marks

Questio	on	prking	Answer	Mark		Notes
12 (*	a)			2	M1	for at least 4 points plotted correctly at end of interval or for all points plotted consistently within each interval of the associated frequency table (eg at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5 or 0, 5, 10, 15, 20, 25) at the correct height
		(NB: a 'bar chart' type graph scores zero marks)	correct cf graph		A1	All points plotted correctly at end of interval (tolerance 1 small square) and joined with a curve or line segments accept curve that is not joined at (0, 0).
(1	b)	If answer is in the given range, then award the mark – unless from obvious incorrect working	10.5 to 12	1	B1ft	accept answer in range $10.5 - 12$ or ft <i>their</i> cumulative frequency graph (must be an ascending graph) (allow 1 small square tolerance)
(1	c)	NB: readings are 5.5 – 7 and 15.5-17 (but for this M1 these do not have to be correct if correct working is shown – eg lines or marks indicating use of CF 20 (or 20.25)and CF 60 (or 60.75) with an indication on the Distance axis at the correct points (or they can just show the correct readings))		2	M1ft	For correct use of LQ and UQ, ft from a cum freq graph provided method is shown – eg a line horizontally to the graph from readings of CF 20 and CF 60 to meet the graph and then a vertical line to the Distance axis(even if wrongly read scale) or clear marks on the graph and Distance axis that correspond to the correct readings or correct values from the Distance axis
		If answer is in the given range, then award the marks – unless from obvious incorrect working	8.5 to 11.5		Alft	Accept a single value in range 8.5 to 11.5 or ft from their cumulative frequency graph provided method is shown
	(d)	not in context : office <i>B</i> workers have a higher median than office <i>A</i> workers oe in context : office <i>B</i> workers [tend to] travel further oe		2	B1	ft comparison of medians e.g. Office <i>B</i> workers travel further [but if they have a wrong median then correct comparison of this with the 15 km] (Must compare to median in (b))
		not in context : the IQR for office <i>A</i> workers is bigger than the IQR for office <i>B</i> workers oe in context : The distances for the office <i>A</i> workers are more spread out/more varied oe			B1	ft comparison of IQR eg Office A distances are more spread (must compare to IQR in (c)) NB: To award both marks at least one comparison must be in context Total 7 marks

Question		Working	Answer	Mark		Notes	
13	(a)		0.3		B1	oe first race branch correct	
			0.6, 0.4, 0.6	2	B1	oe second race branches correct	
	(b)	$0.7 \times "0.6" (= 0.42)$ oe or "0.3" × "0.4" (= 0.12) oe or $0.7 \times 0.4 (= 0.28)$ oe or "0.3" × "0.6" (= 0.18) oe			M1	ft their tree diagram dep on probabilities being less than 1	
		"0.42" + "0.12" oe or 1 - "0.28" - "0.18"oe			M1	ft complete method to find probability that Emilie wins exactly one of the races	
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	0.54	3	A1	oe, eg $\frac{27}{50}$ ft from their tree diagram on M marks only	
	(c)	$0.7 \times 0.4 \times (1 - 0.6) (= 0.112)$ oe or "0.54" $\times 0.3 (= 0.162)$ oe or $0.7 \times "0.6" \times 0.3 + "0.3" \times "0.4" \times 0.3 (= 0.162)$			M1	ft	
		eg "0.112" + "0.162"			M1	ft For a fully correct method	
		Working not required, so correct answer scores full marks (unless from obvious incorrect working) NB: allow decimals, fractions or percentages with % as oe for probability	0.274	3	A1 oe, eg $\frac{137}{500}$ ft from (a) and (b) on M marks only		
						Total 8 marks	

Question	Working	Answer	Mark	Notes
Question 14	Working	$\frac{4y^5}{3x^2}$	Mark 3	NotesB3Accept $\frac{4}{3}x^{-2}y^5$ or $\frac{4x^{-2}y^5}{3}$ or $1.3x^{-2}y^5$ oe NB: Must see 4 and 3and not $16^{\frac{1}{2}}$ or $9^{\frac{1}{2}}$ or $9^{-\frac{1}{2}}$ (allow use of 1.3[33])If not B3 then B2 for 2 of: correct fraction $(\frac{4}{3}or 1.3)$ (allow use of 1.3[33]) or x term correct $(x^2$ on denominator or x^{-2} on numerator) or y term correct $(y^5$ on numerator or y^{-5} on denominator)If not B2 then B1 for 1 of : correct fraction or x term correct or y term correct or for one of
				Total 3 marks
1				1 Otal 5 marks

Question	Working	Answer	Mark	Notes
15 (a)		8.5, 5, 4, 5	2	B2 all 4 correct (allow eg 5.0 for 5)
				(B1 for 2 or 3 correct)
(b)				M1 ft their table dep on B1 scored in (a) for 5 or 6
				points plotted correctly (tolerance 1 small
				square)
		fully correct graph	2	A1 A fully correct graph – correct points plotted
				correctly (within tolerance of 1 small square)
				and intention to join with a smooth curve (be
				generous if intention is clearly a smooth curve
				through all points)
				NB: If a student has nothing in the table for part
				(a) but draws a fully correct graph in part (b)
				award the marks in part (a)
				Total 4 marks

Question	Working	Answer	Mark	Notes
16 (a)	$A = \frac{k}{r^2}$		3	M1 oe k can be any letter (must be a letter and not 1)
	$5 = \frac{k}{0.3^2}$ oe or $k = 0.45$ oe			M1 implies first M1 if you see this stage
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$A = \frac{0.45}{r^2}$		A1 oe with A as the subject eg $A = \frac{9}{20r^2}$
				(anow $A = \frac{1}{r^2}$ where $k = 0.43$ Ge) (SC if M0 scored then award B2 for $A \propto \frac{0.45}{r^2}$ oe)
(b)	$[A =] \frac{"0.45"}{(7.5A)^2} \text{ oe or } \frac{"0.45"}{56.25A^2} \text{ or}$ $\frac{9}{20(7.5A)^2} \text{ oe}$		3	M1 ft from (a) dep on M2 in (a) $([A =]\frac{"0.45"}{7.5A^2}$ is zero marks unless recovered later)
	$A^{3} = \frac{"0.45"}{56.25} (A^{3} = \frac{1}{125} \text{ or } 0.008 \text{ oe}) \text{ or}$ 125 $A^{3} = 1 \text{ oe}$			M1 ft their 0.45 dep on M2 in (a) Must include A^3
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	0.2		A1 oe
				Total 6 marks

Question	Working	Answer	Mark		Notes
17	eg $\frac{4-(-1)}{6-4}$ (= $\frac{5}{2}$ = 2.5)		4	M1	for a method to find the gradient of L
	eg $\frac{-1}{"2.5"}$ (= $-\frac{2}{5}$ = -0.4) or $\frac{-1}{their}$ gradient oe			M1	ft for a method to find the gradient of M if <i>their</i> gradient of L clearly stated (even if no method shown for gradient of L)
	y = "-0.4"x + 8 oe eg y - 8 = $-\frac{2}{5}(x-0)$ or (8 ÷ 2) × 5 (= 20) oe or 8 ÷ (-'their gradient of M')			M1	dep on previous M1 for substitution of $(0, 8)$ into equation for a line or use of $(8 \div 2) \times 5$ (= 20) (maybe on diagram) NB: 20 gains M3 if clearly intended as <i>x</i> coordinate (stated or on a diagram)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	(20, 0)		A1	
					Total 4 marks

Question	Working	Answer	Mark		Notes
18	[ADC =] 180 - 98 (= 82)		6	M1 1	may be seen on diagram
	$[AC^{2} =]8^{2} + 7.5^{2} - 2 \times 8 \times 7.5 \times \cos(98) (= 136.95)$			M1 0	correct equation for AC or AC^2
	$[AC =]\sqrt{"136.95"}$ or $\sqrt{64 + 56.25 + 16.7}(= 11.7)$ oe			M1 of states of the states of	complete method to find AC showing correct order of operations
	eg [[AD =] $\frac{"11.7"\sin 35}{\sin"82"}$ (= 6.77) or [DC =] $\frac{"11.7"\times\sin"63"}{\sin"82"}$ (=10.5)oe (where "82" = 180 - 98 , "63" = 180 - "82" - 35)			M1 o	correct calculation for AD or DC dep on 1 st M1 and 2 nd M1
	eg $[AD =]\frac{"11.7"\sin 35}{\sin"82"}$ and $[DC =]\frac{"11.7"\sin"63"}{\sin"82"}$ oe or $[AD =]\frac{"11.7"\sin 35}{\sin"82"}$ and $[DC =]\sqrt{"11.7"^2 + "6.77"^2 - 2 \times "11.7" \times "6.77" \times \cos"63"}$ $[DC =]\frac{"11.7"\sin"63"}{\sin"82"}$ and $[AD =]\sqrt{"11.7"^2 + "10.5"^2 - 2 \times "11.7" \times "10.5" \times \cos 35}$ Where "63" = 180 - "82" - 35			M1 0	correct calculations for AD and DC (AD = 6.77 DC = 10.5) dep on 1 st M1 and 2 nd M1
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	32.8		A1 a	accept 32.7 – 32.9
					Total 6 marks

Question	Working		Answer	Mark		Notes
19	$x^2 + (3 - 2x)^2 = 18$	$\left(\frac{3-y}{2}\right)^2 + y^2 = 18$		5	M1	substitution of linear equation into quadratic
	$5x^2 - 12x - 9[=0]$ oe	$5y^2 - 6y - 63[=0]$ oe			M1	simplified to a correct 3 term quadratic
	(5x+3)(x-3) = 0	(5y-21)(y+3) = 0			M1ft	dep on M1 for solving <i>their</i> 3 term quadratic equation using
	$\frac{-(-12)\pm\sqrt{(-12)^2-4\times5\times(-9)}}{2\times5}$	$\frac{-(-6)\pm\sqrt{(-6)^2-4\times5\times(-63)}}{2\times5}$				any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms
	$5[(x-\frac{12}{10})^2-\frac{144}{100}]-9=0$ oe	$5[(y - \frac{6}{10})^2 - \frac{36}{100}] - 63 = 0 \text{ oe}$				correct) (if using formula allow one sign error and some simplification – allow as far as
						$\frac{12 \pm \sqrt{144 + 180}}{10}$ or
						$\frac{6\pm\sqrt{36+1260}}{10}$)(if completing
						the square allow as far as shown)
			x = -0.6		A1	oe dep on M2 for both <i>x</i> -values
			and $x = 3$			OR both <i>y</i> -values
			OR $y = 4.2$			
			and $y = -3$			
	Working must be shown		x = -0.6,		Al	oe dep on M2 (must be clearly
			y = 4.2			shown as correct pairs), accept
			x=3,			answers given as coordinates
			y = -3			
						Total 5 marks

Question	Working	Answer	Mark		Notes
20	eg $\sqrt{\frac{36}{25}} \left(=\frac{6}{5}\right)$ or $\sqrt{\frac{25}{36}} \left(=\frac{5}{6}\right)$ or $\sqrt{36}:\sqrt{25} (6:5)$ or $\sqrt{25}:\sqrt{36} (5:6)$ or $\frac{(\sqrt{25})^3}{(\sqrt{36})^3} = \left(\frac{125}{216}\right)$ oe or $\frac{36^3}{25^3} = \frac{(\text{vol of large})^2}{300^2}$ or $\frac{36}{25} = \frac{(\text{vol of large})^2}{300^2}$ oe		3	M1	for a correct scale factor for length – may be given as a fraction or ratio or a correct scale factor for volume given as a fraction or ratio or a correct equation for the volume of each large block
	eg $300 \times \left(\left(\left(\frac{6}{5} \right) \right)^3 \right)^3$ or $300 \div \left(\left(\left(\frac{5}{6} \right) \right)^3 \right)^3$ oe or $\sqrt{\frac{300^2 \times 36^3}{25^3}}$ or $\left(\frac{36 \times 300^2}{25} \right)^{\frac{3}{2}}$ oe Working not required, so correct answer scores full marks (unless from obvious incorrect working)	518.4		M1 A1	for a complete method to find the volume of a large block allow 518
					Total 3 marks

Question	Working	Answer	Mark		Notes
21	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] 2 \times kx - 16x^{-2} \text{ or } 2kx - \frac{16}{x^2} \text{ oe}$		5	M2 (M1)	for both terms differentiated correctly for one term differentiated correctly
	$"2kx - 16x^{-2}" = 0$ oe			M1	ft dep on M1
	eg $\frac{8}{27}k = 8$ or $\frac{4}{3}k = 36$ or $k = 27$ oe			M1	(not ft) for substituting $x = \frac{2}{3}$ into their correct equation for k and getting as far as one step from the value of k or the correct value of k
	Working must be seen	36		A1	dep on M4
					Total 5 marks

Qu	Working	Answer	Mark	Notes	
22	$[g(x) =] 2(x-3)^2 - 5$		4	B2	for $a = 2$, $b = 3$ and $c = 5$ correct (stated or shown)
					(B1 for one of $a = 2$, $b = 3$ and $c = 5$ correct)
	stretch y direction scale factor 2 oe [ft			M1	Stretch and a correct description of the stretch or
	(1, 1, 2, 3)				translation and a correct description of the
	their a or translation $\begin{pmatrix} -5 \end{pmatrix}$ (it correct				translation
	use of their h and c) of				NB: must include the word translation (or
					translate) and stretch
		Correct		A1	Stretch <i>y</i> direction scale factor 2
		transformations in correct order			followed by translation $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$ oe eg
					translation $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$, stretch SF2 in <i>y</i> direction
					followed by translation $\begin{pmatrix} 0\\ -5 \end{pmatrix}$
					Total 4 marks
22	$[g(x) =] 2(x-3)^2 - 5$		4	B2	for $a = 2$, $b = 3$ and $c = 5$ correct (stated or shown)
Alt					(B1 for one of $a = 2$, $b = 3$ and $c = 5$ correct)
	translation $\begin{pmatrix} 3 \\ -2.5 \end{pmatrix}$ (ft correct use of their			M1	A correct description of the stretch or the translation
	b and $0.5c$) of or stretch y direction scale				
	factor 2 (ft their <i>a</i>)				
		Correct transformations in correct order		A1	Translation $\begin{pmatrix} 3 \\ -2.5 \end{pmatrix}$ oe followed by
					stretch y direction scale factor 2
		1	1		I Otal 4 marks

22	$(\mathbf{N}, 2)$	ag where h = number of block range	as where u = number of red read		5	N/1	for making a compatient by
23	$\left(\frac{N+3}{N+3}\right)$	v = 1	eg where $r =$ number of red pens		5	1111	$\begin{array}{cccc} \text{III} & \text{III} & \text{III} & \text{III} \\ \text{C} & \text{III} & \text{III} & \text{III} & \text{III} \\ \end{array}$
	$\binom{2}{(N+3)}$	b or	$\frac{r+3}{2}$ or				finding the probability of the
	$eg = \frac{1}{N} = \frac{1}{2N}$	2b-3	2r + 3				first pen being black for their
	1 (21)						method. If in 2 variables, one
		$b \qquad N+3$					must also be defined in terms of
		$\frac{b}{-}$ and $N = 2b - 3$ (or $b = \frac{1}{2}$)					the other (any letter may be
			$\frac{r+3}{2}$ and $N = 2r+3$ (or $r = \frac{N-3}{2}$)				the other. (any letter may be
			N N $2i + 5(0i + 2)$				used for the variable)
	eg	b $b-3$ 9 or	r^{r+3} r^{9} or			M1	oe dep on previous M1 for a
	N + 3 N - 3 9	$eg \frac{1}{2h-3} \times \frac{1}{2h-4} = \frac{1}{35}$ or	$eg_{\frac{2r+3}{2r+2}} \times \frac{2r+2}{2r+2} = \frac{35}{35}$ 01				correct equation for black, red
	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \times \frac{1}{2} \frac{1}{2} = \frac{1}{25}$	b + 3 = 0	$\frac{2}{n+2}$ $\frac{2}{n}$ 0				must be in one variable or if ?
	2N $2(N-1)$ 33	$\frac{b}{-} \times \frac{b-3}{-} = \frac{9}{-}$	$\frac{7+3}{2} \times \frac{7}{2} = \frac{9}{2}$ and $N = 2r+3$				- must be mone variable of m 2
		N N-1 35	N N-1 35				variables, one must be defined
							in terms of other.
	eg $35(N+3)(N-3)$	$eg 35(b^2 - 3b) =$	eg $35(r^2 + 3r) =$			M1	dep on previous marks
	=9(2N(2N-2))	$9(4b^2 - 14b + 12)$	$9(4r^2+10r+6)$				
	or						for a correct equation in one
	$25(\lambda/2 = 0) =$						voriable with no algebraic
	$33(1^{-}-9) -$						
	$9(4N^2-4N)$						fractions – brackets may or may
							not be expanded
	$eg N^2 - 36N + 31\overline{5} (=$	$eg b^2 - 21b + 108 (= 0)$	$eg r^2 - 15r + 54 (= 0)$			M1	For correctly rearranging their
	0) (equation to a 3 term quadratic
	<i>•)</i>						equation to a 5 term quadratie
	Working must be seen	1	1	21.		A1	cao dep on M4
				15			
							Total 5 marks