Internat	ional	GCSE Maths							
Apart fro	Apart from questions 7b, 11a, 11b, 13, 14, 16, 20, 23, 26 (where the mark scheme states otherwise) the correct answer, unless clearly obtained								
from an i	incorr	ect method, should be taken to imply a correct met	hod.						
Questi	ion	Working	Answer	Mark		Notes			
1		For [8 hours 12 minutes =] 8.2 [hours] or $8\frac{12}{60}$ oe or $\frac{41}{5}$ oe or $8 \times 60 + 12$ (= 492) [minutes]		3	B1	For correctly writing the time as a time in hours or minutes or for a correct calculation to do this			
		[Average speed =] $\frac{5658}{8.2}$ oe eg $\frac{5658}{"492"} \times 60$ oe			M1	For use of speed = distance \div time (use of their time in hours – if used minutes, then must multiply by 60) (allow 5658 \div 8.12 (= 696.79) for this mark if B0 awarded (allow 696 – 697))			
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	690		Al				
						Total 3 marks			

2		91 – 6 <i>n</i>	2	B2	For a correct answer in any form
					eg $91 - 6 \times n$ or $-6n + 91$ or $85 + (n - 1)(-6)$ oe
					(B1 for $-6n + k$ oe (k may be zero or absent))
					NB: award full marks for eg $x = 91 - 6n$
					$\frac{\text{or } n \text{ in term } -91 - 6n}{\text{Total 2 marks}}$

3	$8 \times x (= 8x) \text{ or } 14 \times x (= 14x) \text{ or } (14 - 8) \times x (= 6x)$ or $\frac{1}{2} \times (14 - 8) \times (13 - x) (= 39 - 3x)$ or $\frac{13 + x}{2} \times (14 - 8) (= 39 + 3x)$ or $\frac{1}{2} \times 13 \times (14 - 8) (= 39)$ or $\frac{8 + 14}{2} \times x (= 11x)$ or $14 \times 13 (= 182)$ or $8 \times (13 - x) (= 104 - 8x)$ or $\left(\frac{8 + 14}{2} \times (13 - x)\right) (= 143 - 11x)$ oe		4	M1	one correct area linked to the shape
	$14x + 6 \times \frac{1}{2} \times (13 - x) \text{ oe eg } 8x + \frac{x + 13}{2} \times 6$ or $\frac{8 + 14}{2} \times x + \frac{13 \times (14 - 8)}{2}$ or "182" $-\left(\frac{8 + 14}{2} \times (13 - x)\right)$ or $11x + 39$ oe			M1	ft from correct working expression for total area of shape – with no parts omitted or duplicated Adding up parts of given shape or large rectangle subtracting trapezium (or subtracting (rectangle + triangle))
	eg $11x + 39 = 91.8$ or $14x + 39 - 3x = 91.8$ or $182 - 143 + 11x = 91.8$ or $16x + 6x + 78 = 183.6$ oe			M1	fully correct equation with no fractions (allow 91.8 or multiples of 91.8 but no other decimals) and no brackets
	<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	4.8		Al	or $4\frac{4}{5}$ or $\frac{24}{5}$ or $\frac{24}{5}$ or Total 4 marks

4	eg $(36 \div 9) \times 5$ or 20 [ducks] or 20 : 36 or for writing the 3 parts of the ratio correctly eg 35 : 10 : 18 oe		3	M1	For a fully correct calculation for the number of ducks or stating 20 ducks – may be shown in a ratio – does not need to be labelled if it is clear that the number or calculation refers to the number of ducks
	"20" \div 2 = 10 and 10 × 7 oe or $\frac{36}{18}$ × 35 oe			M1	For a correct calculation to find the number of chickens. (award the M2 for 70 : 20 : 36 or a different order if intention is clear eg by labels)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	70		A1	
					Total 3 marks

5	(a)	$6x^2 + 9x - 3x^2 - 5x$		2	M1	expansion with at least 3 correct terms (must see for example, $6x^2$ and not just $3x \times 2x$)(can assume that no sign in front of a number is a + if terms written in a list or table)
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$3x^2 + 4x$		A1	or $4x + 3x^2$ or $x(3x + 4)$ or $x(4 + 3x)$
	(b)	eg $p + d = at$ or $-at = -d - p$ or $\frac{p}{a} = \frac{at}{a} - \frac{d}{a}$ oe		2	M1	Correct first stage in rearrangement
		Working not required, so correct answer scores full marks	$t = \frac{p+d}{a}$		A1	oe eg $t = \frac{p}{a} + \frac{d}{a}$ or $t = \frac{-d - p}{-a}$ Must have " $t =$ " either in working or on answer line
	(c)	$w^{2} \times w^{n} = w^{10} \text{ or } w^{5} \times w^{n} = w^{13} \text{ or}$ $w^{5} \times w^{n-3} = w^{10}$ or $\frac{w^{5+n}}{w^{3}} = w^{10}$ oe or $5 + n - 3 = 10$ or $2 + n = 10$ or $5 + n = 13$		2	M1	A correct first stage simplifying at least one index in a correct equation or a clearly correct subsequent stage showing correct use of a rule of indices $eg w^5 \times w^n = w^{30}$ and $w^n = w^{30-5}$ or a correct equation using indices only
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	8		A1	accept w ⁸ (trial and error gains full marks if correct and no marks if incorrect unless a rule of indices is clearly shown)
						Total 6 marks

6	(a)	eg 1 - (0.2 + 0.12 + 0.08) (= 0.6) 1 - $\left(\frac{20}{100} + \frac{12}{100} + \frac{8}{100}\right) \left(=\frac{60}{100}\right)$ oe or 100(%) - (20(%) + 12(%) + 8(%)) (= 60(%)) or 0.2 + 0.12 + 0.08 + 3x + x = 1 oe		3	M1	For a correct calculation for the remaining probability or a correct equation for the remaining probability
		" 0.6 " $\div 4 (= 0.15)$ oe or " 0.6 " $\div 4 \times 3$ or " 0.6 " $\times 0.75$ oe (Sight of 0.15 in the table for Orange or Pink or 0.45 for Pink gains M2)			M1	For dividing the remaining probability by 4 or finding ³ / ₄ of the remaining probability NB "0.6" means 0.6 must come from correct working
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	0.45		A1	or $\frac{9}{20}$ oe or 45% (if working in % final answer must have % sign). Allow $\frac{0.45}{1}$ If no answer on answer line, check in the correct space in table above. Value on the answer line takes precedence over the table.
	(b)	0.12×150 oe eg $12 + 6$		2	M1	For a correct calculation to find the number of times the spinner lands on blue
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	18		A1	(an answer of $\frac{18}{150}$ scores M1A0 as this is a probability not a number of times)
						Total 5 marks

7	(a)		-2, -1, 0, 1, 2	2	B2	(B1 for 4 correct values and no incorrect values (eg -1 , 0, 1, 2) or for 6 values with no more than one incorrect value (eg -2 , -1 , 0, 1, 2, 3))
	(b)	$7t - 2t \le 31 + 3$ or $5t \le 34$ or $-3 - 31 \le 2t - 7t$ or $-34 \le -5t$ oe		2	M1	<i>t</i> terms on one side and numbers on the other. Condone = rather than \leq or any other sign for this mark.
		Working required	<i>t</i> ≤ 6.8		A1	oe (dep on M1) eg t $\leq \frac{34}{5}$ or $t \leq 6\frac{4}{5}$ or $6.8 \geq t$ Must have correct sign on answer line (sight of correct answer in working space and just 6.8 oe on answer line gains M1 only)
						Total 4 marks

8	(a)	$1.4 \times 10^{9} - 8.2 \times 10^{7}$ or $1.4 \times 10^{9} - 0.082 \times 10^{9}$ or $140 \times 10^{7} - 8.2 \times 10^{7}$ (= 131.8×10^{7})		2	M1	or for 1 318 000 000 oe but not in standard form eg 1318 × 10 ⁶ or 1.318×10^{n} where $n \neq 9$
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	1.318 × 10 ⁹		A1	Allow 1.32×10^9 or 1.3×10^9
	(b)	$\frac{9.9 \times 10^6}{9.1 \times 10^5}$ oe		2	M1	
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	11		A1	allow 10.8 – 11 (inclusive) SC: if M1 not scored, award B1 for an answer of $\frac{1}{11}$ allow 10.8 – 11 for the denominator
						Total 4 marks

9	(a)		$5a^4c^3(5c^4d + 9a^5h)$	2	B2	If not B2 then award B1 for any correct factorisation with at least 2 of: the 5, a term in <i>a</i> , a term in <i>c</i> , outside the bracket eg $5ac(5a^3c^6d + 9a^8c^2h)$ or $a^2c(25a^2c^6d + 45a^7c^2h)$ (NB: not just a^4 etc as we want to know students have considered more than just one letter or the number) or the correct common factor and a 2 term expression
						inside the bracket eg $5a^4c^3(5c^4 + 9a^5)$ (this is missing <i>d</i> in first term and <i>h</i> in the second but the common factor is correct)
	(b)	$4x^{2} + 10x + 10x + 25 = 4x^{2} - 2x + 6x - 3$ $4x^{2} + 20x + 25 = 4x^{2} + 4x - 3$		3	M1	Correct expansion of $(2x + 5)^2$ or $(2x + 3)(2x - 1)$ or expansion of both sets of brackets with at least 3 of 4 terms correct in both (NB: if written as a 3 term quadratic (and not seen as 4 terms) then the middle term must be correct as it is equivalent to 2 correct terms) (eg (RHS) $4x^2 + 4x + 3$ has 1 error, $2x^2 + 4x - 3$ has 1 error, $4x^2 + 10x - 3$ has 2 errors)
		10x + 10x - 6x + 2x = -3 - 25 or 3 + 25 = -16x or 16x = -28 oe			M1	ft if previous mark awarded. For terms in x on one side and number terms on the other side in a correct ft equation dependent on a linear equation
		Working not required, so correct answer scores full marks (unless from obvious incorrect working eg -1.75 oe from $2x^2 + 20x + 25 = 2x^2 + 4x - 3$ scores M2A0)	-1.75		A1	or $-1\frac{3}{4}$ or $-\frac{7}{4}$ or $-\frac{28}{16}$ or $-1\frac{12}{16}$ oe
						Total 5 marks

10	$5 \times 74 (= 370)$ or $6 \times 77 (= 462)$ or $5 \times 0.74 (= 3.7)$ or $6 \times 0.77 (= 4.62)$		3	M1	one correct product	M2 for $74 + (3 \times 6)$ oe or $77 + (3 \times 5)$ oe
	$6 \times 77 - 5 \times 74$ or "462" - "370" or $(6 \times 0.77 - 5 \times 0.74) \times 100$ or ("4.62" - "3.7") × 100			M1	from correct working	(where 3 = 77 – 74)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	92		A1	allow 92/100 or 92 (trial and error scor and then it gains fu	% or 92 out of 100 res no marks unless correct – ll marks)
						Total 3 marks

11	(a)	$2^{\frac{1}{2}} \times 2^{4}$ or eg 2 × $(2^{4})^{2} = (2^{x})^{2}$ or $2^{9} = 2^{2x}$		2	M1 for eq o o	For a correct expression in powers of 2 that is equivalent to $2^x \text{ eg } 2^{\frac{1}{2}} \times 2^4$ for for showing $\sqrt{2} = 2^{\frac{1}{2}}$ and $16 = 2^4$ for for writing the equation in powers of 2 eg $2 \times (2^4)^2 = (2^x)^2$ or $2^9 = 2^{2x}$
		Working required	$\frac{9}{2}$		A1 0	or 4.5 or $4\frac{1}{2}$ dependent on M1
	(b)	$\frac{11^{-30}}{11^4}$ or $-30 - 4 = n \text{ or } -30 = n + 4 \text{ oe}$		2	M1 F (1 0 (1	For $(11^{-6})^5$ written as 11^{-30} in the equation or $(11^{-6})^5 = 11^{-30}$ shown in working or a correct equation with indices only no marks for 3.914× 10^{-36})
		Working required	-34		A1 d	lep on M1 (as we have asked for working)
						Total 4 marks

12	$\frac{50}{360} \times \pi \times 7 \times 2 \text{ oe eg } \frac{14\pi}{36} \times 5$ or "43.98"÷ 360 × 50 oe		2	M1	Students may use π or 3.14, 3.142 or $\frac{22}{7}$
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	6.1		A1	Accept answers in the range $6.05 - 6.2$
					Total 2 marks

13	$4x(3x + 1) = 12x^{2} + 4x$ or $4x(2x - 3) = 8x^{2} - 12x$ or $(3x + 1)(2x - 3) = 6x^{2} - 9x + 2x - 3 (= 6x^{2} - 7x - 3)$		3	M1	for expanding two of the three factors, allow one error
	(12x2 + 4x)(2x - 3) = 24x3 - 36x2 + 8x2 - 12x oe (8x ² - 12x)(3x + 1) = 24x ³ + 8x ² - 36x ² - 12x \text{ oe} 4x(6x ² - 7x - 3) = eg 24x ³ - 28x ² \text{ oe}			M1	(dep)ft for expanding by the third factor, allow one error (some may do the expansion in one stage and will get to $24x^3 - 36x^2 + 8x^2 - 12x$ without firstly expanding two factors)
	Working required	$24x^3 - 28x^2 - 12x$		Al	dep on M1 isw correct factorisation eg $4(6x^3 - 7x^2 - 3x)$ $x(24x^2 - 28x - 12)$ $4x(6x^2 - 7x - 3)$ do not isw incorrect simplification eg $24x^3 - 28x^2 - 12x = 6x^3 - 7x^2 - 3x$ gets M2A0
					Total 3 marks

14	16 – 9		2	M1	9 and 16 clearly identified either in list or stated. Some may have also identified the second 13 which we will allow as working so long as not intended as the LQ or UQ
	Working required	7		A1	Dep on M1
					Total 2 marks

15	ORQ = 90 - 60 (=30) or OQR = 30 or $PQR = 0.5 \times (360 - 238) (= 61)$ or QPR = 60 or $OPR = \frac{180 - (360 - 238)}{2} (= 29)$		4	M1	The correct working or the correct angle for <i>ORQ</i> or <i>OQR</i> or <i>PQR</i> or <i>QPR</i> or <i>OPR</i> . Must be clearly stated as the correct angle or shown on the diagram in correct position. (eg just seeing 30 in working without a label is not sufficient for the award of this mark)
	<i>Working not required, so correct</i> <i>answer scores M1A1 (unless from</i> <i>obvious incorrect working)</i>	31		A1	if not on answer line, may be seen on diagram or clearly labelled
	NB: degrees symbol not essential for reasons We will allow the symbol Δ for 'triangle' ∠ for angle ∑ for sum	full reasons for method used		B2	(dep on a fully correct method that should lead to the answer) for fully correct reasons for method used (underlined words must be seen) eg Angle between <u>tangent</u> and <u>radius</u> is 90° <u>Angles</u> around a <u>point</u> total 360° <u>Angle at centre is twice angle at circumference/edge</u> Total of <u>angles</u> in <u>triangle</u> is 180° / <u>triangle 180</u> ° Base angles in an <u>isosceles</u> triangle (or <u>2 sides equal</u> , so <u>2</u> <u>angles equal</u>) <u>Angles</u> in a <u>quadrilateral</u> total 360° or <u>quadrilateral 360</u> ° / Accept "4-sided shape" or "quad" <u>Alternate segment</u> theorem (B1 dep on M1 for at least one reason for method used)
					Total 4 marks

				-	
16	eg 10 000x = 2813.13 100x = 28.13 or 1000x = 281.313 10x = 2.813 or 100x = 28.1313 x = 0.2813 oe eg 10 000x - 100x = 2813.13 28.1313= 2785 and $\frac{2785}{9900} = \frac{557}{1980}$ or 1000x - 10x = 281.313 2.81313= 278.5	shown	2	M1 A1	For 2 recurring decimals that when subtracted give a whole number or terminating decimal (27.85 or 278.5 or 2785 etc) eg 10 000x = 2813.13 and $100x = 28.1313$ or $1000x = 281.313$ and $10x = 2.81313$ or $100x = 28.1313$ and $x = 0.281313$ with intention to subtract. (if recurring dots not shown then showing at least one of the numbers to at least 6sf) or $0.28 + 0.0013$ and eg $100x = 0.1313$, 10000x = 13.1313 with intention to subtract. for completion to $\frac{557}{1980}$ dep on M1 (<i>NB: this is a "use algebra to show that"</i> <i>question, so we need to see algebra as well as</i> <i>seeing all the stages of working to award full</i>
	1000x - 10x = 281.313 2.81313 = 278.5 and $\frac{278.5}{990} = \frac{557}{1980}$ or 100x - x = 28.1313 0.281313 = 27.85 and $\frac{27.85}{99} = \frac{557}{1980}$ or eg 10 000x - 100x = 13.1313 0.1313 = 13 and $0.28 + \frac{13}{9900} = \frac{28 \times 99 + 13}{9900} = \frac{2785}{9900} = \frac{557}{1980}$ oe				seeing all the stages of working to award full marks) Total 2 marks

17	eg $2n$, $2n + 2$, $2n + 4$		3	M1	3 consecutive even numbers in algebraic form
	or $2n-2$, $2n$, $2n+2$ etc				(any letter can be used)
	$eg (2n+4)^2 - (2n)^2$			M1	for squaring the largest and smallest even
	$(=4n^2+8n+8n+16-4n^2 (=16n+16))$				numbers and subtracting
	or				(no need to expand or simplify for this mark)
	$(2n+2)^2 - (2n-2)^2$				
	$(=4n^{2}+4n+4n+4-(4n^{2}-4n-4n+4) (=16n))$				
	eg $8(2n+2) = 16n+16$	Correctly		A1	dep on M2 for use of algebra to show correct
	or	shown			conclusion
	eg $16n + 16 = 8(2n + 2)$				
	or				(SCB1 for eg $(p + 4)^2 - p^2$)
	eg $16n = 8(2n)$				
	or				(SCB2 for use of
	eg 8n + 8n = 8(n+n)				eg $(p + 4)^2 - p^2 = 8p + 16 = 8(p + 2)$
	or				If the student shows this and also says "it is true
	$eg \frac{16n+16}{2} = 8$				for all numbers, so it must be true for even
	³ 2n+2				numbers" oe then this would gain M2A1
	Alternative				Total 3 marks
	eg <i>a</i> , <i>b</i> , <i>c</i> are consecutive even numbers where $a < b < c$		3	M1	3 numbers defined as consecutive even numbers
	and one of $b = \frac{a+c}{a+c}$ or $a+c=2b$ or $c-a=4$ or				with one correct equation, writing one term in
	$\frac{1}{2}$				terms of one or more of the others
					or $c - a = 4$
	eg a, b, c are consecutive even numbers where $a < b < c$			M1	3 numbers defined as consecutive even numbers
	and all of $b = \frac{a+c}{a+c}$ and $a+c=2b$ and $c-a=4$ or				with three correct equations that involve all
	2				letters in some place
	Now $c^2 - a^2 = (c - a)(c + a) = 4 \times 2b = 8b$	Correctly		A1	dep on M2 for use of algebra to show correct
		shown			conclusion
					Total 3 marks

18	(a)	eg height of first bar labelled as FD 4 or one 1 cm by 1 cm square = 5 people or 1 line of 5 small squares = 1 person or one 2 cm by 2 cm square = 20 people etc		2	M1	for the use of frequency density – ie that area is proportional to frequency – with either a correct frequency density unambiguously labelled on axis or for an area representing a correct number of people or 2 correct frequencies completed
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	35, 39, 56		A1	All 3 correct
	(b)		Correct bar	1	B1	Width from $30 - 60$ and height 1 cm
	(c)	$0.5 \times "56" + 30 (= 58)$ or $40 + "35" + "39" + "56" + 30 (= 200)$ Working not required so correct curver	59	2	M1ft	follow through their stated value for $20 \le d < 30$ for total greater than 25 or ft their 3 values in the table for total ft dep on a completed table
		working not required, so correct answer scores full marks (unless from obvious incorrect working)	$\frac{58}{200}$		AII	The dep on a completed table of eg $\frac{29}{100}$ or 0.29 or 29%
						Total 5 marks

19	(i)	45	3	B1
	(ii)	12		B1
	(iii)	28		B1
				Total 3 marks

20	9.65, 9.75, 5.85, 5.95, 2.5, 3.5		3	B1	for any one of these stated or used, accept 9.749, 5.949, 3.49
	$\frac{9.75-5.85}{2.5}$			M1	for $\frac{UB_t - LB_w}{LB_y}$ where 9.7 < UB _t \leq 9.75, 5.85 \leq LB _w < 5.9, 2.5 \leq LB _y < 3 This allows for the student who uses some sort of lower/upper value, but are slightly inaccurate eg using 9.74 for <i>t</i>
	Working required	1.56		A1	dep on previous marks (as working is requested)
					Total 3 marks

	1	_			2.64	
21		$[x=] \frac{5}{9\left(\frac{5}{5a-2}\right)+5} \text{ oe or } y = \frac{5}{9x} - \frac{5}{9} \text{ oe}$		4	M1	A correct substitution for y or writing y in terms of x
		$[x =] \frac{5(5a-2)}{45+5(5a-2)} \text{ oe or } (5-5x)(5a-2) = 45x \text{ oe}$ or $9x = \frac{5(45a-18)}{35+25a} \text{ oe}$			M1	Multiplying each term in the numerator and denominator by $(5a - 2)$ to eliminate the fraction in the denominator or equating y's and getting rid of fractions as far as shown on left or single fraction in terms of a
		$[x=] \frac{25a-10}{35+25a} \text{oe or} \ [x=] \frac{5(5a-2)}{5(7+5a)}$			M1	A correct fraction not in simplest form with all brackets expanded or numerator and denominator factorised with the same common factor taken out
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$x = \frac{5a - 2}{7 + 5a}$		A1	Correctly simplified x = needed for the answer, or $x =previously seen in working withcorrect simplified expressionDo not isw if students have triedto do some incorrect cancellingeg x = \frac{5a-2}{7+5a} = \frac{-2}{7} gets M3A0$
	1					Total 4 marks

	•				
22	$[AM =]\sqrt{5^{2} + 15^{2}} (= \sqrt{250} = 15.8)$ where <i>M</i> is midpoint of <i>EF</i> , oe other correct method to find <i>AM</i> $[AD =]\sqrt{12^{2} + 15^{2}} (= \sqrt{369} = 19.2)$ $[DM =])\sqrt{12^{2} - 5^{2}} (= \sqrt{119} = 10.9)$		4	M2 (M1	for a complete method to find two of <i>AM</i> , <i>AD</i> , <i>DM</i> (where <i>M</i> is the midpoint of <i>EF</i>) Other longer ways to find <i>AM</i> , <i>AD</i> , <i>DM</i> may be used but must be a complete method eg $\angle DEM = \cos^{-1}(\frac{5}{12})(=65.37)$ and $DM = 12\sin 65.37$ $\angle DEM = \cos^{-1}(\frac{5}{12})(=65.37)$ and $DM = 5\tan 65.37$ Use $10 \div 2$ as 5 throughout For a complete method to find one of <i>AM</i> , <i>AD</i> , <i>DM</i> (where <i>M</i> is the midpoint of <i>EF</i>))
	eg tan $DAM = \frac{"\sqrt{119}"}{"\sqrt{250}"} \left(= \frac{"10.9"}{"15.8"} \right)$ oe or sin $DAM = \frac{"\sqrt{119}"}{"\sqrt{369}"} \left(= \frac{"10.9"}{"19.2"} \right)$ oe or cos $DAM = \frac{"\sqrt{250}"}{"\sqrt{369}"} \left(= \frac{"15.8"}{"19.2"} \right)$ oe Working not required, so correct answer scores full marks (unless from obvious	34.6		M1 A1	a correct method to find the required angle –other longer methods may be used but they must get to the stage of an equation for the required angle eg sin $DAM = \frac{"10.9"}{\sqrt{"15.8"^2 + "10.9"^2}}$ NB: "10.9" and "15.8" must come from correct working any answer which rounds to 34.6
	incorrect working)				
					Total 4 marks

23	a+d=8.5, a+4d=13 oe		5	M1	for at least 1 correct equation or for $d = 1.5$
	a = 7, d = 1.5			A1	both values correct
	$\frac{N}{2}(2 \times 7 + (N-1)1.5) = 292$ (eg 3N ² + 25N - 1168 [= 0] or 1.5N ² + 12.5N - 584 [= 0])			M1	A correct equation for the total of the first N terms of the series with a and d substituted in. The mark can be gained by using their values of a and d even if no previous marks awarded.
	eg $(3N+73)(N-16)$ [=0] [N=] $\frac{-25 \pm \sqrt{25^2 - 4 \times 3 \times -1168}}{2 \times 3}$			M1	A correct method dep on the previous M1 for solving their 3 term quadratic equation using any correct method (allow one sign error and some simplification – allow as far as $\frac{-25\pm\sqrt{625+14016}}{6}$) oe (may be ± or just +) or if factorising, allow brackets which expanded give 2 out of 3 terms correct, or if completing the square allow as far as the stage $3((N + \frac{25}{6})^2 - \frac{25^2}{6^2}) - 1168 (= 0)$
	Working required	16		A1	dep on M2
					Total 5 marks

24	(a)	$g(2) = 7 \times 2 - 6 (= 8)$			2	M1	
24	(u)	$g(2)$ $7 \times 2 = 6(-6)$	$(2 - 6) \pm 7$		2	1411	
		Working not required so corr	rect answer scores full marks	247		Δ1	
	(h)	$e_{0} v = 5(r^{2}-2r) + 7$	27/	Δ	M1	<u>v – 7</u>	
	(0)	cg y = 5(x - 2x) + 7	cg x = 5(y = 2y) + 7		т	1111	or eg $\frac{y-7}{5} = x^2 - 2x$
		or $y = 5(x^2 - 2x + \frac{7}{5})$ oe or $x = 5(y^2 - 2y + \frac{7}{5})$					5
		eg y = 5[(x - 1) ² - 1 ²] + 7	eg $x = 5((y-1)^2 - 1^2) + 7$ or			M1	or eg $\frac{y-7}{(x-1)^2-1^2}$
		or $y = 5\left((x-1)^2 - 1^2 + \frac{7}{5}\right)$ $x = 5\left((y-1)^2 - 1^2 + \frac{7}{5}\right)$ oe					5 5
		v-2	, x-2		-	M1	1 - 1 - 7
		$(x-1)^2 = \frac{5}{5}$ oe			1111	or eg $(x-1)^2 = \frac{y-t}{5} + 1$	
		Working not required, so corr	1+ x-2		A1	Must be in terms of x, oe eg $1+\sqrt{x-7}+1$	
		marks(unless from obvious in	correct working)	$1^{1}\sqrt{5}$			ν 5
							(NB: $f^{-1}(x) = 1 \pm \sqrt{\frac{x-2}{5}}$ is 3 marks)
		Alternative for (b)					Total 6 marks
		Let $x = 5y^2 - 10y + 7$ [\Leftrightarrow] 5y ²	$x^2 - 10y + (7 - x) = 0$ oe		4	M1	
		$10 \pm \sqrt{100 - 20(7 - x)}$				M1	
		$[y=]\frac{10-\sqrt{100-20(y-x)}}{10}$					
	1	$\sqrt{r-2}$				M1	
		$1\pm\sqrt{\frac{x-2}{5}}$					
		Working not required, so corr	x-2		A1	Must be in terms of <i>x</i>	
		(unless from obvious incorrec	ct working)	$1+\sqrt{\frac{n-2}{5}}$			
							Total 6 marks

-					
25	$[\text{chord } AB =]\sqrt{5^2 + 5^2 - 2 \times 5 \times 5 \times \cos 50} \text{ or } 2 \times 5 \times \sin 25$		6	M1	oe
	$(= 10 \sin 25 \text{ or } 4.226)$				
	$[\angle APB =]\cos^{-1}(\frac{4^2 + 4^2 - "4.226"^2}{2 \times 4 \times 4}) (=63.77)$			M1	oe may use other methods but must be a complete method for $\angle APB$
	or $[\angle OPA =]\sin^{-1}(\frac{0.5 \times "4.226"}{4})(=31.88)$				or $\angle OPA$ (see below for sine rule)
	[Area sector $AOB =$] $\frac{50}{360} \times \pi \times 5^2 (= \frac{125}{36} \pi \text{ or } 10.9)$			M1	oe independent
	[Area sector $APB =$] $\frac{"63.77"}{360} \times \pi \times 4^2$ (= 8.90)			M1	oe NB: 2 × "31.88" = "63.77"
	$\begin{pmatrix} 50 \\ \pi \times 5^2 - 1 \\ \times 5^2 \times \sin 50 \end{pmatrix}_{+} \begin{pmatrix} "63.77" \\ \pi \times 4^2 - 1 \\ \times 4^2 \times \sin "63.77" \end{pmatrix}$			M1	oe (10.9–9.57) +
	$\left(\frac{360}{360} \times 3^{-2} \times 3^{-3} \times 3^{$				(8.90 – 7.17)
	Working not required, so correct answer scores full marks (unless from	3.06		A1	allow 3 – 3.1
	obvious incorrect working)				
	Alternative version (using line of symmetry OP in quadrilateral OAPB)				Total 6 marks
	$[\angle OPA] = \sin^{-1}\left(\frac{5\sin 25}{4}\right) (= 31.88)$		6	M1	oe (see above for cosine rule & trig)
	[Area sector $APB =$] $\frac{2 \times "31.88"}{360} \times \pi \times 4^2 (= 8.90)$			M1	oe
	[Area $OAPB =$] $2 \times \frac{1}{2} \times 5 \times 4 \times \sin(180 - 31.88 25)$ (=16.75)			M1	oe
	[Area sector $AOB =$] $\frac{50}{360} \times \pi \times 5^2 (= \frac{125}{36} \pi = 10.9)$			M1	oe independent
	[Area $\mathbf{R} =$] $\overline{(10.9)^{+} (8.90)^{-} (16.75)^{-}}$			M1	oe
	Working not required, so correct answer scores full marks (unless from	3.06		A1	allow 3 – 3.1
	obvious incorrect working)				
					Total 6 marks

26	\rightarrow (2 + 21)		~	3.61	
26	$eg OP = n(2\mathbf{a} + 3\mathbf{b})$		5	MI	for a vector equation for <i>OP</i>
	or $\overrightarrow{OP} = 2\mathbf{a} + m(5\mathbf{b} - 2\mathbf{a})$				
	or $\overrightarrow{OP} = 5\mathbf{b} + x(2\mathbf{a} - 5\mathbf{b})$				
	eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ and $\overrightarrow{OP} = 2\mathbf{a} + m(5\mathbf{b} - 2\mathbf{a})$			M1	2 vector equations for \overrightarrow{OP} that can
	or				be used to find \overrightarrow{OP} - must be in
	eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ and $\overrightarrow{OP} = 5\mathbf{b} + x(2\mathbf{a} - 5\mathbf{b})$ oe				terms of a and b and a scalar
	eg $5m = 3n$ or $m = \frac{3}{2}n$ or $2n = 2 - 2m$ or $n = 1 - m$ oe			M1	Writing one equation in terms of only
	5 5				one scalar eg one of n or m or x etc
	and $2-2 \times \frac{3}{5}n = 2n$ or $2 \times \frac{5}{3}m = 2-2m$ oe				
	or				
	eg 2n = 2r or n = r or 3n = 5 - 5r oe				
	and $3r = 5$ $5r$ or $3n = 5$ $5n$ of				
	$\frac{3}{2} = \frac{5}{5} = \frac{5}{5} = \frac{5}{5}$		-	M1	for a correct value for one cooler
	eg $m = \frac{3}{8}$ or $n = \frac{3}{8}$ or $x = \frac{3}{8}$ oe				for a correct value for one scalar
	Working is required	5 15 b		A1	oe (dep on M1) but terms in a and
		$\frac{-a}{4} + \frac{-b}{8}$			terms in b should be simplified.
					eg $\frac{1}{2}(10a+15b)$ or $\frac{5}{2}(2a+3b)$ etc
					8 8 8
					Total 5 marks
	Alternative method as a vector method not requested				
	eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$		5	M1	for a vector equation for \overrightarrow{OP}

	eg $CP: OP = 3:5$ or $CP: CO = 3:8$ or $\frac{CP}{OP} = \frac{3}{5} \text{ or } \frac{CP}{CO} = \frac{3}{8} \text{ oe}$		M2	for a correct ratio for two sides in triangle <i>ACP</i> and triangle <i>BOP</i> that help to find \overrightarrow{OP} as <i>a</i> fraction of \overrightarrow{OC} (could be seen on the diagram)
	$\overrightarrow{OP} = \frac{5}{8}\overrightarrow{OC}$ or $n = \frac{5}{8}$		M1	
	Working is required	$\frac{5}{4}\mathbf{a} + \frac{15}{8}\mathbf{b}$	A1	oe (dep on M1) but terms in a and terms in b should be simplified. eg $\frac{1}{8}(10\mathbf{a}+15\mathbf{b})$ or $\frac{5}{8}(2\mathbf{a}+3\mathbf{b})$ etc
				Total 5 marks