Internatio	onal GCSE Maths			
Apart from	m questions 14a, 21 where the mark scheme states of	therwise, the correct	answer, ui	nless clearly obtained from an incorrect method,
should be	taken to imply a correct method.			1
Question	Working	Answer	Mark	Notes
1	6 hrs 39 mins = 6.65 (hrs) or		3	B1
	$6\frac{39}{60}$ or $6\frac{13}{20}$ or $\frac{133}{20}$ or 399 (mins)			
	Average speed = $\frac{429}{6.65}$ oe eg $\frac{429}{399} \times 60$			M1 Use of $S = D \div T$ (use of their time in hours) [allow 429 ÷ 6.39 if B0 awarded]
		64.5		A1 Awrt 64.5
				Total 3 marks
2		3, 7, 8, 8 and one of	3	B3 For a list of 5 correct numbers (B2 for a list of 5 numbers with 2 of:
		4 01 5 01 0		median of 7, mode of 8, range of 5
				B1 for a list of 5 or 6 numbers with 1 of:
				median of 7, mode of 8, range of 5)
				Total 3 marks

3	(a)	$520 - 465 (= 55)$ or $\frac{520}{465} (=1.118)$	3		M1		
		$\frac{55''}{465} \times 100$ or $100 \times (1.118'' - 1)$ oe	11.8		M1		
					A1 11.8 or be	tter (11.827956)	
	(b)	0.12×550 oe (= 66)		3	M1 oe	M2 for	
		550 - "66"			M1	0.88 × 550 oe	
			484		A1		
						Total 6 marks	

4	(a)(i)	1 L	Correct line	1	B1	For $x = 1.5$ drawn
	(ii)		Correct line	1	B1	For $y = x$ drawn
	(iii)	5 4 3 2 1 0 1-2 3 4 5 6 7 2 2	Correct line	1	B1	For $x + y = 6$ drawn
	(b)		Correct region	1	B1	dep on B3 for correctly indicating the region R accept unlabelled or unshaded if clear. Shading can be 'in' or 'out'.
						Total 4 marks

5	(a)	$8x^2 + 20x - 6x^2 + 9x$		2	M1	3 correct terms or all 4 terms condoning incorrect signs
			$2x^2 + 29x$		A1	
	(b)	eg $y^5 \times y^n = y^{19}$ or $y^{-1} \times y^n = y^{13}$ or $5 + n - 6 = 13$		2	M1	Use of 1 rule of indices or a correct linear equation in <i>n</i>
			14		A1	Accept y ¹⁴
	(c)(i)	7t - 2t < 7 + 8 oe eg $5t < 15$ oe		2	M1	Terms in t on one side and number terms the other side – may be in an equation or the incorrect inequality sign or an answer of $t = 3$ or eg $t \ge 3$
			<i>t</i> < 3		A1	
	(ii)		open circle at $t =$ 3 and a line with an arrow to the left	1	B1ft	ft their inequality Allow a line without an arrow if it reaches to at least -5, with an arrow it can be any length
						Total 7 marks

6	(a)		1	1	B1	
	(b)	$3 \times 10^{125} + 2 \times 10^{124}$ or digits 1024×10^{n} oe		3	M1	
		$\begin{array}{c} 32 \times 10^{124} \text{ or } 3 \times 10^{125} + 0.2 \times 10^{125} \text{ or} \\ 30 \times 10^{124} + 2 \times 10^{124} \end{array}$			M1	oe 'correct' answer in incorrect form.
			3.2×10^{125}		A1	
						Total 4 marks

7	5 × 398 (= 1990) or 6 × 401 (= 2406)		3	M1	Correct total for 5 or for 6 cocoa pods
	"2406" – "1990"			M1	(M2 for $398 + 6 \times 3$ or $401 + 5 \times 3$)
		416		A1	
					Total 3 marks

8	$8^2 + 15^2 (= 289)$		5	M1	
	$\sqrt{8^2 + 15^2} (= 17)$			M1	
	$\pi \times \left(\frac{17}{2} \right)^2 (= 226.98) \text{ or } 0.5 \times 15 \times 8 (= 60)$			M1	
	$\pi \times \left(\frac{17}{2} \right)^2 - 0.5 \times 15 \times 8$			M1	
		167		A1	Accept answers which round to 167
					Total 5 marks
			•	•	
9		$2^4 \times 3^2 \times 5^4 \times 11 \times 13$	2	B2	(B1 for 12 870 000 or correct

L			Total 2 marks
	.5 2	D2	(B1 for 12 370 000 of contect unsimplified product or $2^m \times 3^n \times 5^p \times 11 \times 13$ with at least 1 of <i>m</i> , <i>n</i> or <i>p</i> correct or for $2^4 \times 3^2 \times 5^4$)

10	$eg\frac{4}{5} \times \frac{3}{7} (=\frac{12}{35}) oe \text{ or } 0.24 \times \frac{4}{7} (=\frac{96}{700}) oe \text{ or}$ $eg\frac{4}{5} \times 3 (=\frac{12}{5} = 2.4) \text{ and } 0.24 \times 4 (=\frac{24}{25} = 0.96) (or \ 3.36) \text{ or}$ $eg\frac{4}{5} \times 300 (= 240) \text{ and } 0.24 \times 400 (= 96) (or \ 336)$		3	M1	
	$eg''\frac{12}{35}'' + "\frac{96}{700}" \left(=\frac{336}{700}\right) \text{ oe or}$ $\frac{"2.4" + "0.96"}{3+4} \left(=\frac{3.36}{7}\right) \text{ oe or}$			M1	or 0.48 or 48% or correct unsimplified fraction eg $\frac{84}{175}$
	eg $\frac{"240"+"96"}{300+400} \left(=\frac{336}{700}\right)$ oe	$\frac{12}{25}$		A1	сао
					Total 3 marks

11	(definition of part: there are 3 parts: one part is the number, one part the letter <i>t</i> and one part the letter <i>w</i>Definition of terms: there are 6 terms: 2 number terms, 2 terms in <i>t</i> and 2 terms in <i>w</i>)		3	M1 indep	Fully correct cancellation of any two parts of their fraction at any stage of working
				M1 indep	correctly apply the negative power to the whole of their bracket (all parts or all terms) or correctly square all parts or terms of their bracket or correctly apply the negative power AND square of at least two parts (maybe 4 terms) of their bracket
		$4t^4w^2$		A1	Allow $(2t^2w)^2$ after the correct answer
	ALTERNATIVE				· · · /
			3	M2	2 correct terms (M1 for 1 correct term)
		$4t^4w^2$		A1	Allow $(2t^2w)^2$ after the correct answer
					Total 3 marks

12	13 - 4		2	M1 For selecting 4 and 13
		9		A1
				Total 2 marks

13	(a) (i)	62	3	B1
	(a) (ii)	118		B1ft 180 – their (a)(i)
	(b)	62		B1
				Total 3 marks

14	(a)	eg $20 \times \frac{9a-7}{5} - 20 \times \frac{3a-7}{4} = 20 \times 4.55 (= 91)$ or eg $4(9a-7) - 5(3a-7) = 20 \times 4.55$ or eg $\frac{4(9a-7)}{20} - \frac{5(3a-7)}{20} (= 4.55)$ or eg $\frac{4(9a-7) - 5(3a-7)}{20} (= 4.55)$		3	M1	For clear intention to multiply all terms by 20 (or 4×5) or a multiple of 20 oe or to express LHS as two fractions over 20 (or 4×5) or a multiple of 20 oe or as a single fraction with a denominator of 20 (or 4×5) or a multiple of 20 oe if expanded numerator, allow one error
		eg $36a - 28 - 15a + 35 = 20 \times 4.55$ or 21a = 84 oe			M1	Expanding brackets and multiplying by denominator with no more than one sign error
			4		A1	dep on M1
	(b)	$p^2 = \frac{ac+8}{3+c}$		4	M1	for removing square root
		$3p^2 + cp^2 = ac + 8$			M1	for multiplying by denominator and expanding in a correct equation
		$cp^2 - ac = 8 - 3p^2$ or $3p^2 - 8 = ac - cp^2$			M1ft	for gathering terms in c on one side and other terms the other side ft their equation dep on 2 terms in c and two other terms
			$c = \frac{8 - 3p^2}{p^2 - a}$		A1	or $c = \frac{3p^2 - 8}{a - p^2}$
						Total 7 marks

15	(a)	$63 \div 1.5 (= 42)$ or a correct value written on FD scale (10 small squares = FD 10) or 10 squares = 1 parcel or 1 big square = 2.5 parcels oe eg area = $18 \times 5 + 15 \times 42 + 10 \times 24 + 10 \times 30 + 20$ $\times 8 (= 1420)$ $3.6 \times 1 + 3 \times 8.4 + 2 \times 4.8 + 2 \times 6 + 4 \times 1.6 (= 56.8)$ (at least 3 bars correct for any method of summing area)		3	M1	For use of area related to frequency eg showing a correct unambiguous value on the frequency density scale or calculating the area in some form
		$0.5 \times 18 + 63 + 1 \times 24 + 1 \times 30 + 2 \times 8$ (9 + 63 + 24 + 30 + 16) oe eg "1420" ÷ 10 or "56.8" × 2.5 oe			M1	Total of 5 frequencies with just one error or Area of bars with just one error, with correct calculation to give frequency
			142		A1	
	(b)	$0.75 \times 24 (= 18) + 30 + 16 (= 64)$ oe Eg "their (a)" - (9 + 63 + 0.25 × 24) (= 64) (ft figures from (a) dep on M1 for (a))		3	M1ft	(dep on M1 in (a))if working with small squares they may get eg $\frac{640}{1420}$
		$\frac{"64"}{142} \times \frac{"63"}{141}$ (ft their value of 142 from (a))			M1	64 must come from correct working allow $\frac{"64"}{142} \times \frac{"64"}{142}$ (ft their value of 142 from (a))
			672		A1	0.201 or better (0.20137)
			333/			Total 6 marks

16	(a)	$ \begin{array}{c} \varepsilon \\ R \\ 2x \\ 6 \\ x \\ 2 \\ 4 \\ 9 \\ G \end{array} $		3	B3	For all sections completed correctly (B2 for 5 or 6 sections correct (excl x), B1 for 3 or 4 sections correct (excl x))
	(b)	$2x + 6 + x + 2 + 4 + 9 + 9 + 11 = 80$ $(80 - 6 - 2 - 4 - 9 - 9 - 11) \div 3$		3	M1ft	ft their Venn diagram A correct equation to find <i>x</i> or subtracting all numerical values from 80 and dividing by 3 or other fully correct method to find <i>x</i> with all sections completed
		<i>x</i> = 13			A1	correct value for <i>x</i>
			38		B1	their $2x + 12$
	1					Total 6 marks

17	(a)	$\left(\frac{37+28}{2}\right) \times 20 (= 650)$ $\sqrt{4.5^2 + 20^2} (= 20.5) \text{oe}$		4	M1 M1	Correct method to find area of trapezium Correct method to find slanted edge AB oe
		$2 \times `650' + 2 \times `20.5' \times 24 + 37 \times 24 + 28 \times 24$ (2 × `650' + 2 × 492 + 888 + 672)		-	M1	method to find the sum of the surface areas of at least 4 correct faces (ft their area of trapezium) ignore incorrect areas
			3844		A1	
	(b)	eg $\sqrt{24^2 + (37 - "4.5")^2} (= 40.4)$ (AF =) $\sqrt{24^2 + 20^2 + (37 - "4.5")^2} (= 45.08)$		3	M1	Correct method to find diagonal from A to point on HE below F or AF
		$\tan x = \frac{20}{"40.4"} \text{ or } \sin x = \frac{20(\sin 90)}{"45.08"} \text{ or}$ $\cos x = \frac{"40.4"^2 + "45.08"^2 - 20^2}{2 \times "40.4" \times "45.08"}$			M1	Correct trig statement for finding the required angle
		2^ +0.4 ~ +3.00	26.3	-	A1	26.3 - 26.4
<u> </u>	1					Total 7 marks

18	(a)			4	B1	<i>b</i> = 14
		(Gradient $AB =$) $\frac{12}{5}$ oe or eg $\frac{102}{14}$ oe			M1	For the gradient of <i>AB</i>
		(Gradient $BC =$) $-\frac{5}{12}$ oe			M1	Ft correct use of $m_1 \times m_2 = -1$ for <i>their</i> gradient of <i>AB</i> or $a = 2.5$ or $c = -9.5$
			a = 2.5, c = -9.5		A1	for $a = 2.5$ and $c = -9.5$
	(b)	$(AB =) \sqrt{(1 - 4)^2 + (10 - 2)^2}$		3	M1	
		$(=\sqrt{5^2+12^2} (=13))$				
		$(BC =)\sqrt{(19-1)^2 + (10-2.5)^2}$			M1	ft their value of a
		$(=\sqrt{18^2+7.5^2} (= 19.5))$ or				
		$\sqrt{(19-1)^2 + (10 - \text{their } a)^2}$ or				
		1.5 × "13"				
			65		A1	
	•					Total 7 marks

19	$(v =) 3t^2 + 10t - 8$		5	M1	For at least 2 terms differentiated correctly
	$3t^2 + 10t - 8 = 0$			M1	Their $v = 0$ dep on M1 could be implied by
					correct values
	(3t-2)(t+4) (= 0) $(t=) \frac{2}{2}$ or $(t=)-4$			M1	dep on M1 for correct values for <i>t</i> or for $t = \frac{2}{3}$
	3				or
					correct method to solve their 3 term quadratic
					equation: If factorising, allow brackets which when expanded give 2 out of 3 terms correct (If using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{-10 \pm \sqrt{100+96}}{6}$ oe $3(t+\frac{5}{3})^2 - \frac{48}{3} = 0$)
	$(s=)\left(\frac{2}{3}\right)^3 + 5 \times \left(\frac{2}{3}\right)^2 - 8 \times \frac{2}{3} + 10$			M1	For $\frac{2}{3}$ (only) substituted into formula for <i>s</i> or
					for selecting the value from this substitution or for an answer of 7.185
		194		A1	oe but numerator and denominator must be
		27			integers.
					Total 5 marks

20	$\left(\sqrt{2} \right)$		4	M1	For expression for area of triangle
	eg $0.5 \times x \times x \times \sin 60$ $\left(=\frac{\sqrt{3}}{4}x^2 = 0.433x^2\right)$ oe where $x = PQ$				[using $AB = x$ and $PQ = \frac{2}{3}x$ gives
	eg $0.5 \times 2n \times 2n \times \sin 60 (= \sqrt{3}n^2 = 1.732n^2)$ oe where $2n = PQ$				$\frac{\sqrt{3}}{3}x^2 = 0.192x^2$] (correct
	or use $0.5 \times b \times h$ where $h = \sqrt{x^2 - (0.5x)^2} (= \frac{\sqrt{3}}{2}x)$ oe				9 expression in 1 variable eg PQ)
	eg $6 \times 0.5 \times 1.5x \times 1.5x \times \sin 60 \left(= \frac{27\sqrt{3}}{8}x^2 = 5.845x^2 \right)$ oe			M1	for expression for area of hexagon [using $AB = x$ and $PQ = \frac{2}{3}x$ gives
	eg 6 × 0.5 × 3 <i>n</i> × 3 <i>n</i> × sin60 $\left(=\frac{27\sqrt{3}}{2}n^2 = 23.382n^2\right)$ oe or				$\frac{3\sqrt{3}}{2}x^2 = 2.598x^2$
	eg $2(\frac{1}{2} \times 1.5x \times 1.5x \times \sin 120) + 1.5x \times AE$ where				(correct expression in 1 variable eg AB)
	$AE = \sqrt{(1.5x)^2 + (1.5x)^2 - 2 \times 1.5x \times 1.5x \times \cos 120}$				
	$\left(=\frac{27\sqrt{3}}{8}x^2 = 5.845x^2\right) \text{ or use of } 6 \times 0.5 \times b \times h, \text{ finding } h \text{ by Pythagoras}$				
	eg $6 \times 0.5 \times 1.5x \times 1.5x \times \sin 60 - 0.5 \times x \times x \times \sin 60 = 72\sqrt{3}$ oe or			M1	for a correct equation for shaded
	$\left(\frac{27\sqrt{3}}{8} - \frac{\sqrt{3}}{4}\right)x^2 = 72\sqrt{3} \text{ or } (5.845 0.433)x^2 = 124.7 \text{ or}$				area (correct equation in 1 variable, eg <i>PQ</i> or <i>x</i> etc)
	eg 6 × 0.5 × 3n × 3n × sin60 – 0.5 × 2n × 2n × sin60 = $72\sqrt{3}$ oe				
	$\left(\frac{27\sqrt{3}}{2} - \sqrt{3}\right)n^2 = 72\sqrt{3} \text{ or } (23.382 1.732)n^2 = 124.7$				
		4.8	<u> </u>	A1	

				Total 4 marks
$\frac{21}{(5x-8)(5x+8)} \times \frac{(x-5)(x-3)}{5x+8} \text{ or eg } \frac{(5x-8)(x-5)}{(5x+2)}(-(x-7))$		4	M2	For factorising at least 2 of the quadratics correctly – could be implied by 2 factors cancelled correctly (M1 For factorising at least 1 of the 3 quadratics correctly)
$\frac{\frac{(5x-8)(x-5)-(x-7)(5x+2)}{5x+2}}{(5x+2)} \text{ oe or}$ $\frac{\frac{5x^2-25x-8x+40-(5x^2-35x+2x-14)}{5x+2}}{(5x+2)} \text{ oe or}$ $\frac{\frac{(25x^2-64)(x^2-8x+15)-(x-7)(5x^2-13x-6)(5x+8)}{(5x^2-13x-6)(5x+8)}}{(5x+2)(x-3)} \text{ oe or}$ $\frac{\frac{(5x-8)(x^2-8x+15)-(x-7)(5x+2)(x-3)}{(5x+2)(x-3)}}{(5x+2)(x-3)} \text{ oe or}$ $\frac{\frac{(25x^2-64)(x-5)-(x-7)(5x+2)(5x+8)}{(5x+2)(5x+8)}}{(5x+2)(5x+8)} \text{ oe}$	54		M1	(indep (ft if M2 awarded)) For writing the fractions over a common denominator with or without brackets removed – need not be in simplest form Could be written as 2 separate fractions over a common denominator
	$\frac{54}{5x+2}$		Al	dep on M3
				Total 4 marks

22	eg $(AD =) \sqrt{6^2 + 6^2 - 2 \times 6 \times 6 \times \cos(50)}$ (= 5.07)or 2 × 6sin25 (=5.07) or $\frac{6 \sin 50}{\sin 65}$ (= 5.07) oe		6	M1	Correct expression for AD ie $AD = \dots$ or $x = oe$
	eg 6 + 6 + $\sqrt{6^2 + 6^2 - 2 \times 6 \times 6 \times \cos(50)}$ or 12 + "5.07" (=17.0)7 or 17.1)			M1	A correct statement of perimeter of triangle <i>OAD</i>
	eg (arc <i>BC</i> =) $\frac{50}{360} \times \pi \times 2 \times (6+x)$ oe			M1	A correct statement for arc <i>BC</i> (condone missing brackets around $(6 + x)$ for this mark only)
	eg 2×"17.1" = 12 + 2x + $\frac{50}{360}$ × π × 2×(6+x) oe			M1	dep on M3 for a correct equation for <i>x</i>
	eg 2×17.1-12 $-\frac{30}{18}\pi = 2x + \frac{5x}{18}\pi$			M1	isolating terms in <i>x</i> in a correct equation
		5.89		A1	5.88 - 5.89
					Total 6 marks