International GO	CSE Maths								
Apart from Questions 3, 7b, 12, 17, 20, 22 the correct answer, unless clearly obtained by an incorrect method, should be taken to									
imply a correct method									
Q	Working	Answer	Mark	Notes					
1 (a)		x^7	1	B1					
(b)	eg $7^8 \times 7^4 = 7^{12}$ or $7^8 \div 7^3 = 7^5$ or $7^5 \times 7^4$ or $7^4 \div 7^3$ = 7 or $7^8 \times 7$ or $7^{12'} \div 7^3 = 7^{12'-3}$		2	M1 for one correct step – must be written as a power of 7					
		7 ⁹		A1 for 7^9					
				Total 3 marks					

2	32.4×100^3		2	M1	for 32.4×100^3 oe
		32 400 000		A1	for 32 400 000 accept 3.24×10^7
					Total 2 marks

3	$\frac{14}{3}(+)\frac{19}{5}$ or $(4)\frac{10}{15}(+)(3)\frac{12}{15}$ or $(4)\frac{10a}{15a}(+)(3)\frac{12a}{15a}$		3	M1	for correct improper fractions or fractional part of numbers written correctly over a common denominator
	$eg \frac{14 \times 5 + 19 \times 3}{3 \times 5} \text{ or } \frac{70}{15} + \frac{57}{15} \text{ or } \frac{70a}{15a} + \frac{57a}{15a} \text{ or} 4\frac{10}{15} + 3\frac{12}{15} = 7\frac{22}{15} \text{ oe}$			M1	for correct fractions with a common denominator of 15 or a multiple of 15
	$\frac{70}{15} + \frac{57}{15} = \frac{127}{15} = 8\frac{7}{15} \text{ or } 7\frac{22}{15} = 8\frac{7}{15}$ or if shows $8\frac{7}{15} = \frac{127}{15}$ at the beginning then show that the addition comes to $\frac{127}{15}$	Shown		A1	dep on M2 for a correct answer from fully correct working or shows that RHS = $\frac{127}{15}$ and fully correct working shows LHS = $\frac{127}{15}$
					Total 3 marks

4	30 + 4x + 10 + x + 20 (= 5x + 60) or $180 - 30 (=150)$		4	M1	Allow $5x + 60 = n$ where $n \neq 180$ or for subtracting 30 from 180	M2 for 5x + 30 = 150 oe
	e.g. $30 + 4x + 10 + x + 20 = 180$ or $5x + 60 = 180$ oe or $180 - 30 - 10 - 20$ (=120)			M1	for setting up the equation or for subtracting all numerical values of angles from 180	
	$5x = `120' \text{ or } `120' \div 5$			M1	for correctly simplifying t dividing '120' by 5	to $ax = b$ or for
		24		A1	for 24	
						Total 4 marks

5	Fully correct angle	2	B2	Fully correct angle bisector with all
	bisector with all			arcs shown.
	relevant arcs			B1 for all arcs and no angle bisector
	shown			drawn or for a correct angle bisector
				within guidelines but not arcs or
				insufficient arcs
				Total 2 marks

6	1 - (0.24 + 0.31) (= 0.45) Or $(0.24 + 0.31) \times 180 (= 99)$		4	M1	or for a correct equation for missing values eg x + 0.24 + 2x + 0.31 = 1 oe (can be implied by 2 probabilities that total 0.45 in table if not contradicted in working space)
	'0.45' ÷ 3 (= 0.15) Or '0.45' × 180 (= 81) Or 180 - 99 (= 81)			M1	(or 0.15 correctly placed in table as long as not contradicted)
	'0.15' × 180 Or '81' ÷ 3			M1	or for an answer of $\frac{27}{180}$
		27		A1	
					Total 4 marks

7 (a)	2x > 4 - 7 or $x + 3.5 > 2$			2	M1 For or a	a correct first step allow $2x = 4 - 7$ or $x + 3.5 = 2$ in answer of $x = -1.5$ or $x < -1.5$ or -1.5
			x > -1.5		A1 for.	x > -1.5 oe
(b)	$(x \pm 8)(x \pm 5)$	$\frac{-(-3)\pm\sqrt{(-3)^2-4\times1\times(-40)}}{2\times1}$ or $\frac{3\pm\sqrt{9+160}}{2}$			M1 or (OR (con brac (if - reco	(x + a)(x + b) where $ab = -40$ or $a + b = -5a correct substitution into quadratic formulaindone one sign error in a, b or c and missingckets)+ rather than \pm shown then award M1 only unlessovered with answers)$
	(x-8)(x+5)	$\frac{3\pm\sqrt{169}}{2}$ or $\frac{3\pm13}{2}$			M1 <u>3±</u>	$\frac{\pm\sqrt{169}}{2}$ or $\frac{3\pm13}{2}$
			8, -5	3	A1 dep	on at least M1 for correct values
						Total 5 marks

8 (a)	545 - 500 (= 45) or $592 - 545 (= 47)$		4	M1	may be seen as part of a calcula	ation
	$\frac{45}{500} \times 100 (=9)$ or $\frac{47}{545} \times 100 (=8.6)$			M1	for one correct expression (allo correct expression for 8.6 throu	w 8 or 8.7 from a ughout)
	$\frac{45}{500} \times 100 (=9)$ and $\frac{47}{545} \times 100 (=8.6)$			M1	for both correct expressions or finds 109% of 545: 1.09 × 545(545 (49.05) or having found "8 500: 1.086 × 500(=543) or 8.69	having found "9%" (=594.05) or 9% of .6%" finds 108.6% of % of 500 (43)
		No, 9(%) and 8.6(%)		A1	for no oe, 9% and 8.6% seen of no oe and 9% and 594.05 or 8.0 No, 49.05 > 45 or No 594.05 >	5% and 543 or 592 oe
Alternativ	e mark scheme for 8(a)					
	$\frac{545}{500} \times 100(=109) \text{ or } \frac{545}{500}(=1.09) \text{ or}$ $\frac{592}{545} \times 100(=108.6) \text{ or } \frac{592}{545}(=1.086)$ $\frac{545}{500} \times 100(=109) \text{ or } \frac{545}{500}(=1.09) \text{ and}$		4	M3	for both correct expressions wh 109 or 1.09 and 108.6 or 1.086 (allow 108 or 108.7 from correct or 1.08 or 1.087 from correct w throughout) (if not M3 then award M2 for c	nich should lead to ct working for 108.6 vorking for 1.086 one of these
	$\frac{592}{545} \times 100 (= 108.6) \mathrm{or} \frac{592}{545} (= 1.086)$				expressions)	
		No, 109(%) and 108.6(%)		A1	oe eg no and 1.09 and 1.086	
(b)	952 ÷ 85 × 100 oe (=1120)		3	M1	for a method to find price before discount	M2 for $\frac{952}{85} \times 15$
	$0.15 \times "1120"$ or "1120" - 952 oe			M1	for a correct method to find discount	
		168		A1		
						Total 7 marks

9	19.3×150		2	M1	for 19.3 × 150	
		2895		A1	for 2895	
						Total 2 marks

10	$50 \times 60 \ (= 3000) \ \text{or} \ 50 \div 1000 \ (= 0.05 \ \text{or} \ \frac{1}{20})$		3	M1	for 50 with at least one of \div 1000 or \times 60
	or 50 × 60 × 60 (= 180 000) or				or
	$\frac{60 \times 60}{1000} (= 3.6)$				$\frac{60 \times 60}{1000} (= 3.6)$
	or $1000 \div 60 \div 60 (= 0.27777 \text{ or } \frac{5}{18})$				or $1000 \div 60 \div 60$
	$50 \times \frac{60 \times 60}{1000}$ oe eg $50 \div \frac{5}{18}$			M1	(dep) for a complete method
		180		A1	for 180 (SCB1 for both conversion factors correct but applying them wrongly eg $\frac{50 \times 1000}{60 \times 60}$)
					Total 3 marks

11	$(AC^2 -) 17^2 - 15^2$		5	1/1	
11	$(AC^2 =) 1/2 = 13^2$		5	MII	
	$(AC =)\sqrt{17^2 - 15^2} \ (=\sqrt{64} = 8)$			M1	
	$\frac{\pi \times 8'}{2} (= 4\pi = 12.566)$			M1	dep on M2 for $\frac{\pi \times 8'}{2}$ oe or 4π 12.5663
	·12.566'+ 15 + 17			M1	for '12.566' + 15 + 17 and no additional values
		44.6		A1	for awrt 44.6
					Total 5 marks
Alternative mar	k scheme for 11	•		-	
	$\cos^{-1}\left(\frac{15}{17}\right) (= 28.0724) \text{ or } \sin^{-1}\left(\frac{15}{17}\right) (= 61.9275)$		5	M1	for a correct method to find one of the angles
	$15 \times \tan(28.0724) = 8$ or $15 \div \tan(61.9275) = 8$			M1	
	$\frac{\pi \times '8'}{2} \ (= 4\pi = 12.566)$			M1	dep on M2 for $\frac{\pi \times 8'}{2}$ or 12.5663 or 4π
	"12.566" + 15 + 17			M1	for "12.566" + 15 + 17 and no additional values
		44.6		A1	for awrt 44.6
					Total 5 marks

12	Litres per amount of money and then conversion		
	$\frac{8.6 \times 10^5}{770000} (= 1.1168) l/\$$		M1 Number of litres per \$ for D
	$\frac{4.2 \times 10^5}{2500000} (=0.168) l/k$		M1 Number of litres per Krone for A
	A: <i>l</i> /\$ to <i>l</i> /k '1.1168' ÷ 6.57 (= 0.1699)or D: <i>l</i> /k to <i>l</i> /\$ '0.168' × 6.57 (= 1.103)		M1 l /\$ to l /k for A or l /k to l /\$ for D
		Arctic Oil and relevant figures	A1 for Arctic Oil with 1.1168 and 1.10376 or 0.168 and 0.1699
	Conversion then litres per amount of money		
	$\frac{2500000}{6.57} (=380517.5) \text{ or } 770\ 000 \times 6.57 (=505\ 8900)$		M1 Changing Krone to \$ or \$ to Krone
	$\frac{4.2 \times 10^5}{2500000}$ (=0.168) or $\frac{4.2 \times 10^5}{'380517.5'}$ (=1.103)		M1 Litres per Krone or litres per \$ for D
	$\frac{8.6 \times 10^5}{770000} (=1.1168) \text{ or } \frac{8.6 \times 10^5}{'5058900'} (=0.1699)$		M1 Litres per Krone or litres per \$ for A
		Arctic Oil and	A1 for Arctic Oil with 1.1168 and
		relevant figures	1.10376 or 0.168 and 0.1699
	Cost per litre then conversion		
	$\frac{2500000}{4.2\times10^5} (=5.952)$		M1 Price per litre in Krone for D
	$\frac{770000}{8.6\times10^5}(0.895)$		M1 Price per litre in \$ for A
	$(5.952) \div (6.57) = (0.9059)$ or $(0.895) \times (6.57) = (0.882)$		M1 Conversion of Krone to \$ or \$ to Krone
		Arctic Oil and	A1 For Arctic Oil with 5.952 and 5.882 or
		relevant figures	0.895 and 0.9059

Conversion then cost pe	r litre			
$\frac{2500000}{6.57}(=380517.5)\mathrm{o}$	770 000 × 6.57(= 505 8900)		M1	Changing Krone to \$ or \$ to Krone
$\frac{2500000}{4.2\times10^5} (=5.952) \text{or} \ \frac{'3}{4}$	$\frac{80517.5'}{4.2 \times 10^5}$ (=0.9059)		M1	Cost per litre in Krone or cost per litre in \$ for D
$\frac{770000}{8.6\times10^5} (=0.895) \text{ or } \frac{14}{3}$	$\frac{058900'}{0.6 \times 10^5} (= 5.882)$		M1	Cost per litre in \$ or cost per litre in Krone for A
		Arctic Oil and relevant figures	A1	For Arctic Oil with 5.952 and 5.882 or 0.895 and 0.9059
Comparing equal amou	nts			
$\frac{8.6 \times 10^5}{4.2 \times 10^5} (= \frac{43}{21} = 2.047)$	$\frac{4.2 \times 10^5}{8.6 \times 10^5} (= \frac{21}{43} = 0.488)$		M1	Multiplier for same amount of D as A or same amount of A as D
'2.047'×2500 000 K (=5119047.619)K	'2.047' × 770 000 \$ (=376046.511)\$		M1	Cost of equal amount of D as A or A as D
(5119047.619'÷6.57) = 779154.88\$ or 770 000×6.57=5058900 I	'376046.511'× 6.57 =2470625.58K or 2500 000÷6.57 = 380517\$		M1	Converts so can compare costs – either K to \$ or original A to K or \$ to K or original D to \$
		Arctic Oil and relevant figures	A1	Arctic Oil and 779154 or with 2470625(figures may be rounded) Or Arctic Oil with 5119047 and 5058900 or with 376046 and 380517
Students may compare other equal	amounts – please use the scheme t	that best fits their me	thod and a	ward marks appropriately.
				Total 4 marks

13	Angle $CAD = 28^{\circ}$ or angle $ACB = 32^{\circ}$ or angle $ACD = 90^{\circ}$ or angle $ABD = 90^{\circ}$		4	M1	
		30°		A1	For a correct answer of 30
	Angles in the same segment are equal, angle in a semicircle is 90° (or angle at centre is double angle at circumference oe) angles in a triangle add up to 180°/angles in a triangle isosceles triangle alternate angles vertically opposite angles (or vertically opposite) angles at a point opposite angles in a cyclic quadrilateral angle between tangent and radius (diameter) alternate segment theorem angles subtended by the same arc(or chord) at the circumference (or on the circle)			B2	Dep on M1 for all correct reasons for their method used (if not B2 then award B1(dep on M1) for a correct circle theorem reason)
					Total 4 marks

14	(a)			2	B1	for $\frac{13}{20}$ and $\frac{7}{20}$ on the first branch (0.65 and 0.35)
			Correct probabilities on the tree diagram		B1	for $\frac{12}{19}$, $\frac{7}{19}$, $\frac{13}{19}$ and $\frac{6}{19}$ on the second branch (accept 2 dp or better 0.6315, 0.3684, 0.6842, 0.3157)
	(b)	$\frac{7}{20} \times \frac{6}{19}$ oe only		2	M1	ft from (a) as long as probabilities less than 1
		$\frac{21}{190}$	$\frac{21}{190}$		Al	for $\frac{21}{190}$ oe or 0.11 (at least 2 dp)
						Total 4 marks

15	С, В, Е	3	B3	for all 3 correct
			(B2	for 2 correct)
			(B1	for 1 correct)
				Total 3 marks

16	$y^2 = \frac{x+1}{x-4}$		4	M1	for squaring
	$y^{2}(x-4) = x+1$ or $y^{2}x-4y^{2} = x+1$			M1	for removing the fraction
	$y^{2}x - x = 4y^{2} + 1$ or $-4y^{2} - 1 = x - y^{2}x$ or $x(y^{2} - 1) = 4y^{2} + 1$ or $-4y^{2} - 1 = x(1 - y^{2})$			M1	for expanding the bracket and rearranging for <i>x</i> so that the terms in <i>x</i> are on one side of the correct equation
		$x = \frac{4y^2 + 1}{y^2 - 1}$		A1	for $x = \frac{4y^2 + 1}{y^2 - 1}$ or $x = \frac{-4y^2 - 1}{1 - y^2}$ (need to see x = somewhere)
					Total 4 marks

17	e.g. $n^2 - (n-1)^2$ or $(n+1)^2 - n^2$		3	M1	for setting up a correct algebraic expression (any letter can be used)
	e.g. $n^2 - n^2 + 2n - 1$ or $n^2 + 2n + 1 - n^2$			M1	Correct expansion of brackets and correct signs or a correct result
		e.g. 2 <i>n</i> – 1 is always odd		A1	dep on M2 for eg $2n - 1$ or $2n + 1$ or $-(2n + 1)$ oe and a suitable conclusion SCB1 for eg $(2n)^2 - (2n - 1)^2$ or $(2n + 1)^2 - (2n)^2$ oe
					Total 3 marks

18 (a)	$ (0.7 \times 10) + (3.4 \times 5) + (1 \times 9) + (2.5 \times 6) + (4.8 \times 15) = 7 + 17 + 9 + 15 + 72 (= 120) $		3	M1	for a correct method to work out the total area eg total frequency or number of small squares or other correct method (allow one error in method) [count use of 25
	no. of sml squares =				for 24 as one error]
	$(10 \times 7) + (5 \times 34) + (9 \times 10) + (6 \times 25) + (15 \times 48)$				or all correct values in bars of not added
	= 70 + 170 + 90 + 150 + 720 (= 1200)				
	or all correct values in bars oe not added				
	$(1 \times 7) + (2.5 \times 6) + (5 \times 4.8) = 7 + 15 + 24 (= 46)$			M1	for a correct method to work out the area between 17
	or				minutes and 35 minutes
	no. of sml squares				eg using frequency density or number of small squares
	$(48 \times 5) + (6 \times 25) + (7 \times 10) = 240 + 150 + 70 (=460)$				oe
	46	46		A1	$f_{ar} = \frac{46}{10}$
	$\overline{120}$	$\overline{120}$			$10r \frac{1}{120}$ of (allow 2 dp or better 0.5855 or 58% or
					better)
(b)			2	M1	for $\frac{n}{15}$ where $n < 15$ or $\frac{q}{720}$ where $q < 720$ or
					$\frac{r}{72}$ where r < 72 or
					$\frac{9}{m}$ where $m > 9$ or $\frac{432}{p}$ where $p > 432$
					$\frac{43.2}{t}$ where $t > 43.2$
		0		A 1	
		<u>9</u>		AI	$\frac{9}{100}$ oe
		15			15
					Total 5 marks

19	(a)		y = -4x + k (oe)	1	B1	for $y = -4x$ or $y = -4x + k$ where k is any numerical value $k \neq 7$ Could be written in another form e.g. $3y + 12x = 20$
	(b)	$m = \frac{-2-1}{2-3}$ or $m = \frac{1-2}{-3-2}$ or $-\frac{3}{5}$ or -0.6		4	M1	for using $m = \frac{y_2 - y_1}{x_2 - x_1}$
		$m_p = \frac{5}{3}$			M1ft	for using $m_1 \times m_2 = -1$
		$4 = \frac{5}{3}(-6) + c \text{ oe eg } 4 = -10 + c \ (c = 14)$			M1ft	dep on previous M1 for substituting $(-6, 4)$ into linear equation formula
		$y-4 = \frac{3}{3}(x-6)$				$4 = \frac{1}{3}x + c \text{ to find value of } c \text{ or}$
						$y = \frac{-x}{3} + 14$ or $y = 1.66x + 14$
			$Eg \\ 5x - 3y + 42 = 0$		A1	for correct simplified equation where all values are integers 10x - 6y + 84 = 0 or 3y = 5x + 42 oe
						Total 5 marks

20	$\frac{18}{\sqrt{7}+1} \times \frac{\sqrt{7}-1}{\sqrt{7}-1}$		3	M1	for $\frac{18}{\sqrt{7}+1} \times \frac{\sqrt{7}-1}{\sqrt{7}-1}$
	eg $\frac{18(\sqrt{7}-1)}{7-1}$			M1	Dep on M1 for a correct numerator and multiplying out the denominator to $7 - 1$ or 6
	$3\sqrt{7}-3$	$3\sqrt{7} - 3$		A1	Dep on M2 Allow 3 $\sqrt{7}$ -1
					Total 3 marks

21	(a)(i)		(0, 6)	2	B1	
	(iii)		(2, 6)		B1	
	(b)	eg $(x-4)^2 + 3(x-4) + 4$ oe or eg $(x+\frac{3}{2}-4)^2 - \frac{9}{4} + 4$ oe or eg $x^2 + 3x + 10$ oe or eg $(x+\frac{3}{2})^2 - \frac{9}{4} + 4 + 6$ oe eg $y - 6 = x^2 + 3x + 4$		2	M1	for applying one of the transformations to the equation
			y = $(x - 4)^2 + 3(x - 4) + 10$ or y = $(x + \frac{3}{2} - 4)^2 - \frac{9}{4} + 4 + 6$		A1	oe eg $y = (x - \frac{5}{2})^2 + \frac{31}{4}$ or $y = x^2 - 5x + 14$ oe
						Total 4 marks

22	$x^{2} + (x+2)^{2} - 2(x+2) = 24$		5	M1	for substituting linear equation into the
					quadratic equation
	$2x^2 + 2x - 24$ (=0) or $x^2 + x - 12$ (=0)			A1	for a correct equation in the form
	or $2x^2 + 2x = 24$ or $x^2 + x = 12$				$ax^2 + bx + c = 0 \text{ or } ax^2 + bx = -c$
	(x+4)(x-3) (= 0) or			M1ft	dep on M1 for solving their quadratic equation
	$-1+\sqrt{1^2-(4\times1\times-12)}$				using any correct method (allow one sign error
	$x = \frac{1 - \sqrt{1 - (1 - 12)}}{2 \times 1}$ or				and some simplification – allow as far as
					$-1\pm\sqrt{1+48}$, see
	$\left(r - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} \right)^{2} - 12 = 0$				$\frac{1}{2}$) or if factorising, allow brackets
	$\begin{pmatrix} x \\ 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$				which expanded give 2 out of 3 terms correct)
	x = -4 and $x = 3$			A1	for both x values dep on M1
	(-4, -2) and $(3, 5)$	(-4, -2) and $(3, 5)$		A1	for both solutions dep on M1
Alternativ	ve mark scheme for 22			1	Ł
	$(y-2)^2 + y^2 - 2y - 24$		5	M1	for substituting linear equation into the
	(y - 2) + y - 2y - 2 +		-		quadratic equation
	$2v^2 - 6v - 20$ (=0) or $v^2 - 3v - 10$ (=0)			A1	for a correct equation in the form
	$2y^2 - 6y = 20$ or $y^2 - 3y = 10$				$ay^2 + by + c = 0$ or $ay^2 + by = -c$
	(y-5)(y+2) = 0 or			M1ft	dep on M1 for solving their quadratic equation
	$\frac{1}{2} + \sqrt{(-2)^2 + (4 - 1) + 10}$				using any correct method (allow one sign error
	$v = \frac{-3 \pm \sqrt{(-3)} - (4 \times 1 \times -10)}{0}$ or				and some simplification – allow as far as
	2×1				$3 \pm \sqrt{9 \pm 40}$
	$(3)^{2} (3)^{2} 10 0$				$\frac{3 \pm \sqrt{3 + 10}}{2}$) or if factorising, allow brackets
	$\left \left(\frac{y-z}{2} \right) - \left(\frac{z}{2} \right) \right ^{-10} = 0$				
					which expanded give 2 out of 3 terms correct
	y = 5 and $y = -2$			Al	for both y values dep on M1
	(-4, -2) and $(3, 5)$	(-4, -2) and $(3, 5)$		A1	for both solutions dep on M1
					Total 5 marks

$(AP:PM=)\left \frac{3}{2}\mathbf{a}+\frac{3}{4}\mathbf{b}\right :\left \frac{1}{2}\mathbf{a}+\frac{1}{4}\mathbf{b}\right \text{ oe}$ $(AP:AM=)\left \frac{3}{2}\mathbf{a}+\frac{3}{4}\mathbf{b}\right :\left 2\mathbf{a}+\mathbf{b}\right (=3:4) \text{ oe}$ $(AM:PM=)\left 2\mathbf{a}+\mathbf{b}\right :\left \frac{1}{2}\mathbf{a}+\frac{1}{4}\mathbf{b}\right (=4:1) \text{ oe}$ $AP=3PM \text{ oe eg } \frac{3}{2}\mathbf{a}+\frac{3}{4}\mathbf{b}=3(\frac{1}{2}\mathbf{a}+\frac{1}{4}\mathbf{b}) \text{ oe}$ $AM=\frac{4}{3}AP \text{ oe}$ $AM=4PM \text{ oe}$ $3:1$ A1 Tatal 3 mark	23	$\overrightarrow{PM} = -\frac{3}{2}\mathbf{a} - \frac{3}{4}\mathbf{b} + 4\mathbf{a} + \frac{1}{2}(2\mathbf{b} - 4\mathbf{a})\left(=\frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b}\right)$ $\overrightarrow{AM} = 4\mathbf{a} + \frac{1}{2}(2\mathbf{b} - 4\mathbf{a})(=2\mathbf{a} + \mathbf{b})$ $\overrightarrow{AM} = 2\mathbf{b} + \frac{1}{2}(4\mathbf{a} - 2\mathbf{b})(=2\mathbf{a} + \mathbf{b})$ $\overrightarrow{MA} = \frac{1}{2}(2\mathbf{b} - 4\mathbf{a}) - 2\mathbf{b}(=-2\mathbf{a} - \mathbf{b})$ $\overrightarrow{MA} = \frac{1}{2}(4\mathbf{a} - 2\mathbf{b}) - 4\mathbf{a}(=-2\mathbf{a} - \mathbf{b})$		3	M1	for finding \overrightarrow{PM} or \overrightarrow{AM} or \overrightarrow{MA}
Total 2 mark		$(AP:PM=) \begin{vmatrix} \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b} \end{vmatrix} : \begin{vmatrix} \frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b} \end{vmatrix} \text{ oe}$ $(AP:AM=) \begin{vmatrix} \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b} \end{vmatrix} : 2\mathbf{a} + \mathbf{b} (= 3:4) \text{ oe}$ $(AM:PM=) 2\mathbf{a} + \mathbf{b} : \begin{vmatrix} \frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b} \end{vmatrix} (= 4:1) \text{ oe}$ $AP = 3PM \text{ oe eg } \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b} = 3(\frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b}) \text{ oe}$ $AM = \frac{4}{3}AP \text{ oe}$ $AM = 4PM \text{ oe}$	3 · 1		M1	For use of a correct ratio or fraction linking AP and PM or AP and AM or AM and $PM(in either order)vectors must be in form p\mathbf{a} + q\mathbf{b}$
10111 J MULA						Total 3 marks

24	$\frac{4(2x-3)-3(2x-5)}{(2x-5)(2x-3)} \text{ or } \frac{8x-12-6x+15}{(2x-5)(2x-3)} \text{ oe}$		4	M1	Writing 1st fraction as a fraction over a common denominator (can be 2 separate fractions)
	x(3-2x)(3+2x) or $(3x-1)(2x-5)$			M1	Complete factorisation of numerator or denominator of 2nd fraction
	$\frac{2x+3}{(2x-5)(2x-3)} \times \frac{(3x-1)(2x-5)}{x(3-2x)(3+2x)}$			M1	may be partially simplified
		$\frac{3x-1}{x(2x-3)(3-2x)}$		A1	e.g. $\frac{3x-1}{x(2x-3)(3-2x)} \text{ or}$ $\frac{1-3x}{x(2x-3)^2} \text{ or}$ $\frac{3x-1}{x(12x-9-4x^2)} \text{ or}$ $\frac{3x-1}{(12x^2-9x-4x^3)} \text{ oe}$ isw for incorrect denominator expansion
					Total 4 marks

25	n = 50		3	B1	
	$33125 = \frac{50}{2} [2 \times 50 + (50 - 1) \times k] \text{ oe}$ 33125 = 25 [100 + 49k] oe 1325 = 100 + 49k oe 1225 = 49k oe			M1	For correct equation, using formula with $a = 50$ and $n = 50$ substituted (for this mark, allow $n = 49$) (<i>k</i> may be written as <i>d</i>)
		25		A1	
					Total 3 marks

26	$1600 = \frac{1}{3} \times \pi \times r^2 \times 25 \text{ oe}$		6	M1	for substituting into volume formula for cone correctly and equating to 1600
	eg $r = \sqrt{\frac{1600}{\frac{1}{3}\pi \times 25}}$ or $r = \sqrt{\frac{192}{\pi}} (= \sqrt{61.1(154)} = 7.8176)$			M1	dep for correct rearrangement of volume formula for <i>r</i>
	$l = \sqrt{"7.817"^2 + 25^2} (= \sqrt{686.1154} = 26.193)$			M1	Dep on M2 correct method to find slant height of cone (radius of sector)
	$2 \times \pi \times$ "7.817" (= 49.1196)			M1	for using $C = 2\pi r$ oe using figures from correct method
	or				or for using $4 - \pi r l$ using figures from
	$\pi \times$ "7.817"×"26.193"(=643.315)				correct method
	"49.1196" = $2 \times \pi \times$ "26.193" $\times \frac{x}{360}$			M1	for using arc length = $2\pi r \times \frac{x}{360}$
	or				or for using area of sector =
	"643.315" = $\pi \times$ "26.193" ² $\times \frac{\pi}{360}$				$\pi r^2 \times \frac{x}{360}$
		107°		A1	for 107° - 108°
					Total 6 marks