Internation	al GCS	SE Maths				
Apart fron	n ques	stions 2, 6, 10, 13a, 18ai (where the mark scheme stat	es otherwi	se) th	e cor	rect answer, unless clearly obtained by an
incorrect n	nethoo	d, should be taken to imply a correct method				
Q		Working	Answer	Ma	ırk	Notes
1	e.g. 2	$36 \div (2+6) \ (=4.5) \text{ or } 36 \div \frac{2+6}{3+2+6} (=49.5) \text{ oe}$ sha = f9 OR Julie = f27				M1
	e.g. $3 \times "4.5"$ or "49.5"× $\frac{3}{3+2+6}$ or "9"× $\frac{3}{2}$ or "27"× $\frac{3}{6}$					M1 or an answer of $\frac{27}{2}$
			13.5(0)	3	3	A1 SCB1 for $36/5 \times 7 (= 43.2)$ or $36/9 \times 2 (= 8)$
						Total 3 marks
2		e.g. $\frac{16}{5}$ and $\frac{21}{8}$ oe			M1	both fractions expressed as improper fractions
		e.g. $\frac{16^2}{5} \times \frac{21}{8^1}$ OR $\frac{336}{40}$ oe			M1	correct cancelling or multiplication of numerators and denominators without cancelling
		e.g. $\frac{16}{5} \times \frac{21}{8} = \frac{336}{40} = \frac{42}{5} = 8\frac{2}{5}$ or $\frac{16}{5} \times \frac{21}{8} = \frac{336}{40} = 8\frac{16}{40} = 8\frac{2}{5}$ or $\frac{16^2}{5} \times \frac{21}{8^1} = \frac{42}{5} = 8\frac{2}{5}$ or candidate clearly shows that in the question, the result of $8\frac{2}{5} = \frac{42}{5}$ and that their answer becomes $\frac{42}{5}$	shown	n 3 A1		Dep on M2 for conclusion to $8\frac{2}{5}$ from correct working – either sight of the result of the multiplication e.g. $\frac{336}{40}$ must be seen or correct cancelling prior to the multiplication to $\frac{42}{5}$ NB: use of decimals scores no marks
						Total 3 marks

3	a	e.g. $d-g = 2ac$ $\frac{d}{2c} = \frac{g}{2c} + a$			M1	for a correct first step eg subtract g from both sides OR divide all terms by 2 OR divide all terms by c OR divide all terms by $2c$
			$a = \frac{d - g}{2c}$	2	A1	oe
	b		3f(3e-4)	2	B2	(B1 for $3(3ef - 4f)$ or $f(9e - 12)$ or $3f(ke - 4)$ or $3f(3e - m)$ where $k \neq 0$ and $m \neq 0$)
	С	$x^2 - 5x + 2x - 10$			M1	for any 3 correct terms or for 4 out of 4 correct terms ignoring signs or $x^2 - 3x$ or for $-3x - 10$
			$x^2 - 3x - 10$	2	A1	
	d	$\frac{n^{11}}{n^5} \mathbf{OR} \ n^{-1} \times n^7 \mathbf{OR} \ n^4 \times n^2 \mathbf{OR}$ $n^4 \times n^7 \times n^{-5} \mathbf{OR} \ n^{(11)} \div n^5 = n^{(11)} \times n^{-5}$			M1	for simplifying two terms
			n^6	2	A1	
						Total 8 marks

4 ai	b, l, u, e, g, r, y	1	B1	No incorrect or repeats
aii	w, h, i, t	1	B1	No incorrect or repeats
b	No with reason	1	B1	eg 'e is in all three sets' OR 'all three sets
				share a member' OR $B \cap G \cap W = (\{)e(\})$
				Total 3 marks

5	$\pi \times 7.2^2 \div 2 \ (= 81.4)$			M1	allow 81.3 – 81.5 for area of semi circle
	"81.4" ÷ 6 (= 13.5) or 12 × 6 (= 72) or "81.4" ÷ 12 (= 6.7)			M1	(dep) allow $13.5 - 13.6$ for the number of boxes needed (NB: $12 \times 6 = 72$ alone is 0 marks)
		No with correct figures	3	A1	
					Total 3 marks

6	$(x \pm 9)(x \pm 4)$	$\frac{-(-5)\pm\sqrt{(-5)^2-4\times1\times(-36)}}{2\times1}$ or $\frac{5\pm\sqrt{25+144}}{2}$			M1	or $(x + a)(x + b)$ where $ab = -36$ or $a + b = -5$ OR correct substitution into quadratic formula (condone one sign error in a, b or c) (if + rather than \pm shown then award M1 only unless recovered with answers)
	(x-9)(x+4)	$\frac{5\pm\sqrt{169}}{2}$ or $\frac{5\pm13}{2}$			M1	or $\frac{5 \pm \sqrt{169}}{2}$ or $\frac{5 \pm 13}{2}$
			9, -4	3	A1	dep on at least M1
						Total 3 marks

7	$20.40 \div (1 - 0.15)$			M2	for a complete method eg $20.40 \div (1 - 0.15)$
				(M1)	for $20.40 \div (100 - 15) (= 0.24)$ or e.g. $0.85x = 20.40$
		24	3	A1	
					Total 3 marks

8	$28 \times 5 (= 140)$ OR $26.5 \times 2 (= 53)$			M1	or 87
	$(28 \times 5 - 26.5 \times 2) \div (5 - 2)$			M1	for a complete method
		29	3	A1	
					Total 3 marks

9	$1.5 \times 2 \times 8 \ (= 24 \ (cm^3))$			M1	for finding the volume of the cuboid
	e.g. $(V=) \frac{5.73 \times 1000}{19.32}$ (= 296.58) or $(M=) 19.32 \times "24"$ (= 463.68)			M2	complete method to find the volume of statue or the mass of one block, could work in g or kg (if not M2 then award M1 for correct use of density formula e.g. $19.32 = \frac{5.73 \times 1000}{V}$ or $19.32 = \frac{M}{"24"}$)
	e.g. "296.58" ÷ "24" (= 12.3576) or "5730" ÷ "463.68" (= 12.3576)			M1	could work in g or kg
		13	5	A1	cao
					Total 5 marks

10	e.g. $6(x-1) (= 6x - 6)$			M1	method to find expression for perimeter of hexagon
	e.g. $2(x+5) + 2x - 3 (= 4x + 7)$			M1	method to find expression for perimeter of triangle
	" $6x - 6$ " = " $4x + 7$ "			M1	(dep on at least M1) for equating both expressions
	e.g. $6x - 4x = 7 + 6$			M1	(dep on previous M1 and equation of the form $ax + b = cx + d$) for rearranging the <i>x</i> terms on one side and the numerical terms on the other and all expansions correct.
		5.5	5	A1	oe (dep on M2)
					Total 5 marks

11	а		4.35	1	B1 accept 4.349
	b		4.25	1	B1 cao
	с	17.5 or 9.35			M1
		or $e - f$ where $17 < e \le 17.5$ and $9.35 \le f < 9.4$			
			8.15	2	A1
					Total 4 marks

12	а		23	1	B1	accept 22 – 24
	b	e.g. 29 – 17			M1	For subtracting readings from 15 and 45
			12	2	A1	accept 10 – 14
	с				B1	ft comparison of the medians
			Two comparisons (at	2	B1	ft comparison of the IQR
			least one of which			Note: to award 2 marks at least one
			must be in context)			comparison must be in context
						Total 5 marks

13 a	e.g. <i>x</i> = 0.57272 and 100 <i>x</i> = 57.272 OR e.g. 10 <i>x</i> = 5.7272 and 1000 <i>x</i> = 572.72			M1	For 2 recurring decimals with correct algebraic labels that when subtracted give a whole number or terminating decimal eg 56.7 or 567 etc e.g. $100x = 57.272$ and $x = 0.57272$ OR $1000x =$ 572.72 and $10x = 5.7272$ with intention to subtract. (If recurring dots not shown then showing at least the digits 57272, ie 5sf)
	e.g. $100x - x = 57.272 0.57272 = 56.7$ and $\frac{56.7}{99} = \frac{63}{110}$ or $1000x - 10x = 572.72 5.7272 = 567$ and $\frac{567}{990} = \frac{63}{110}$	Shown	2	A1	for completion to $\frac{63}{110}$
b	$\frac{3}{2-\sqrt{y}} \times \frac{2+\sqrt{y}}{2+\sqrt{y}} \text{ or } 6+3\sqrt{y} \text{ or } 4-y$			M1	for multiplying numerator and denominator by $(2+\sqrt{y})$ or a correct expression for the numerator or denominator
		$\frac{6+3\sqrt{y}}{4-y}$	2	A1	
					Total 4 marks

14	(<i>AOC</i> =) 38 × 2 (= 76)		4	1	
		52			
				 (dep on M1) for all reasons relevant to their me words must be seen. <u>angle</u> at the <u>centre</u> is <u>2 ×</u> (double) angle at <u>circ</u> at <u>circumference</u> is <u>1/2</u> angle at <u>centre</u> 	ethod – underlined umference / angle
				angles in a triangle add to 180° or angles in a base angles in an isosceles triangle (are equal) If not B2 then award B1 (dep on M1) for a cor	triangle add to <u>180°</u> rect circle theorem
					Total 4 marks

15	e.g. $(EF =)$ 12cos40 (= 9.19) or $(FD =)$ 12sin40 (= 7.71) and $(EF =) \sqrt{12^2 - "7.71"^2}$ (= 9.19)			M2	complete method to find <i>EF</i> (if not M2 then M1 for a correct statement involving <i>EF</i> e.g. $\frac{EF}{12} = \cos 40$)
	e.g. $\frac{"9.19"}{EG} = \tan 28$ or $\tan 62 = \frac{EG}{"19.9"}$ or $\frac{"9.19"}{FG} = \sin 28 (=19.5)$ and $"19.5"^2 - "9.19"^2 (=298.9)$			M1	(dep on M2) for a correct trig statement involving EG or complete method to find FG and a correct start to Pythagoras process
		17.3	4	A1	accept 17.2 – 17.3
					Total 4 marks

16	$0.42 \div 0.6 (= 0.7)$ oe			M1	(indep)
	1 - 0.7 (= 0.3) oe OR $1 - 0.6$ (= 0.4) oe			M1	(indep)
	"0.3" × "0.4" oe			M1	for a complete method
	OR $1 - (0.42 + 0.6 \times "0.3" + "0.4" \times "0.7")$ oe				
		0.12	4	A1	oe
					Total 4 marks

17 a		9	1	B1
b		$f(x) \ge 0$	1	B1 accept $y \ge 0$ or $f \ge 0$
с	$(g(2) =) \frac{4}{2+3} \left(=\frac{4}{5}\right)$ oe			M1 or for sight of fg(x) e.g. $\left(\frac{4}{x+3}-4\right)^2$
		10.24	2	A1 oe e.g. $\frac{256}{25}$
				Total 4 marks

18 ai				B1	tangent drawn at $P(x=2)$
				M1	(dep on B1) for a method to find gradient e.g. $\frac{\text{difference in } y\text{-values}}{\text{difference in } x\text{-values}}$
		-0.6	3	A1	(dep on B1) accept answers in range -0.4 to -0.7 and from correct figures for their line
aii	e.g. $y = -0.6x + c$ or $y = mx + 3.6$ or $2.4 = -0.6 \times 2 + c$			M1	for start of method to find the tangent equation e.g. $y = mx + c$ where <i>m</i> is their gradient or $y = mx + c$ where <i>c</i> is the <i>y</i> -intercept for their tangent or for substituting a point from the curve e.g. (2, 2.4) into $y = mx + c$ where <i>m</i> is their gradient
		y = -0.6x + 3.6	2	A1	ft their gradient from (i) and intercept of their tangent, so long as intercept / value of c is > 3
b		3		B1	
		-1	2	B1	
					Total 7 marks

19	eg $5 \times 2x + 10 \times x = 160$ OR $160 \div 2 (= 80)$ [freq of one bar] OR $40 \times 5 + 20 \times 10 (= 400)$ [total no. of sml squares] OR $160 \div 16 (= 10)$ [students per 1 cm^2] OR $1 \text{ cm}^2 = 10$ students OR e.g. 5 small squares = 2 students oe			M1	for setting up an appropriate equation OR finding the area of the 2^{nd} or 3^{rd} bar OR finding the total number of small squares OR for finding the number of students per 1 cm^2 or $1 \text{ cm}^2 = 10$ students OR other appropriate scale e.g. 5 small squares = 2 students
	' $x' = 8$ OR 8 or 16 seen in the correct position on the vertical scale OR 160 ÷ "400" (= 0.4 oe)			M1	for finding frequency density OR method to find the frequency of the 1 st , 4 th or 5 th bar (1 st is 108, 4 th is 90, 5 th is 12)
	"7.2" \times 15 + 160 + "6" \times 15 + "2.4" \times 5 OR 160 + "0.4" \times (18 \times 15 + 15 \times 15 + 5 \times 6)			M1	(dep on at least M1) for a complete method to find the total frequency (allow one error or one repeat but no omission)
		370	4	A1	
					Total 4 marks

20	$\frac{1}{3} \times \pi \times r^2 \times 2h \left(=\frac{2}{3}\pi r^2 h\right) \mathbf{OR} \ \frac{1}{3} \times \pi \times (0.5r)^2 \times h \left(=\frac{1}{12}\pi r^2 h\right)$			M1	for finding the volume of the small or large cone
	" $\frac{2}{3}\pi r^2 h$ " - " $\frac{1}{12}\pi r^2 h$ " $\left(=\frac{7}{12}\pi r^2 h\right)$			M1	(dep) method to find the volume of the frustum (condone missing brackets)
	$"\frac{2}{3}\pi r^{2}h" - "\frac{1}{12}\pi r^{2}h" = \frac{4\pi r^{3}}{3}$			M1	equating volume of frustum and sphere (must be correct including brackets)
	e.g. $\frac{7}{12}\pi r^2 h = \frac{4\pi r^3}{3}$			M1	for a correct simplified formula (1 term on each side)
		$\frac{7}{16}h$	5	A1	accept 0.4375 <i>h</i>
					Total 5 marks

21	$CB = 13\sin 40 \ (= 8.3562)$			M1
	$\frac{1}{2} \times 6 \times "8.35" \times \sin ACB = 22$			M1
	Acute version of $ACB = \sin^{-1} \left(\frac{22}{\frac{1}{2} \times 6 \times "8.35} \right) (= 61.35)$			M1
	ACB = 180 - "61.353" (= 118.647)			M1
	$AB^{2} = 6^{2} + "8.35"^{2} - 2 \times 6 \times "8.35" \times \cos"118.64" \ (= 153.98)$			M1
		12.4	6	A1 accept 12.3 – 12.5
				Total 6 marks

22 a		2	M1 for one correct value
	2.5, -60		A1 oe e.g2.5 & 120
			SC M1 for drawing cos curve
bi	(2, 5)	1	B1
bii	(4, -2)	1	B1
			Total 4 marks

23	$(v=) 3t^2 + 2 \times 4t - 5$			M1	2 out of 3 terms differentiated correctly	
	$3T^2 + 8T - 5 = V \mathbf{OR} \ 3T^2 +$	8T - 5 - V = 0			A1	correct equation
	$3(T^{2} + \frac{8}{3}T) - 5$ OR 3(T ² + $\frac{8}{3}T - \frac{5}{3}$)	$(T=) \frac{-8\pm\sqrt{8^2-4\times3\times(-5-V)}}{2\times3}$			M1	attempt to complete the square OR use quadratic formula (condone one sign error in <i>a</i> , <i>b</i> or <i>c</i> and ft their quadratic with mistake in <i>a</i> or <i>b</i>) (condone + instead of \pm)
	$\left(T+\frac{4}{3}\right)^2 = \left(\frac{4}{3}\right)^2 + \frac{V+5}{3}$	$(T=) \ \frac{-8 \pm \sqrt{124 + 12V}}{6}$			M1	sight of this method mark implies the previous M1 (condone + instead of \pm) (ft their quadratic with mistake in <i>a</i> or <i>b</i>)
	$T = \frac{-4}{3} \pm \frac{1}{3}\sqrt{16 + 3V + 15}$	$(T=) \ \frac{-8 \pm 2\sqrt{31+3V}}{6}$			M1	(condone + instead of \pm) (ft their quadratic with mistake in <i>a</i> or <i>b</i>)
			$\frac{-4+\sqrt{31+3V}}{3}$	6	A1	accept $k = 31$ and $m = 3$
						Total 6 marks