Question	Working	Answer	Mark	Notes
•	•			otherwise) the correct answer, unless clearly obtained by an
incorrect ı	method, should be taken to imply a	correct met	hod	
1	95 × 8 + 105 × 12 + 115 × 15 +			M2 for at least 4 correct products added (need not be
	125 × 10 + 135 × 3 (= 5400)			evaluated) or
	or			If not M2 then award
	760 + 1260 + 1725 + 1250 + 405 (= 5400)			M1 for consistent use of value within interval (including end points) for at least 4 products which must be added
				or
				correct midpoints used for at least 4 products and not added
	'5400' ÷ '48'			M1 dep on at least M1
				Allow division by their Σf provided addition or total under column seen
		112.5	4	A1 oe accept 112 or 113 from complete working
				Accept 112.5 with no working
				Do not accept 112 or 113 with no working
				Total 4 marks
2	Two pairs of intersecting arcs with			M1 for 2 pairs of arcs that intersect within guidelines or correct
	equal radius centre D and E			perpendicular bisector without arcs.

			Correct bisector with arcs	2	A1 Total 2 marks
3	(a)	Examples There are no members that are in both A and B No members in common (in A and B) No numbers the same (in A and B) B has even numbers. A has odd numbers except 2 which is not in B Nothing in A is in B oe No overlap A and B don't share any numbers	Correct statement	1	B1 for a statement which indicates correct meanings for intersection and empty set
	(b)		1 and 9	1	B1
	(c)	e.g. 3 5 7 4 6 10 C	1, 2, 8, 9	2	B2 for fully correct (B1 for 3 or 4 correct with no more than one addition or a fully correct Venn diagram)

	Total 4 marks
--	---------------

4		$\pi \times 7^2 \times 20$ (= 3078.76) or 980 π			M1 for complete method to find volume
<u> </u>		20 (307011 3111) 21 30011	3080	2	A1 for answer in range 3077.2 – 3080
					Total 2 marks
5	(a)	4 × 120 (= 480)			M1
		e.g. 120 ÷ 2 × 5 (= 300) or			M1 for a method to find the income for one of the selling prices
		120 × 0.4 × 7 (= 336) or			
		(120 – '60' – '48') × 8 (= 96) or			
		120 × 0.1 × 8 (= 96)			
		e.g. (120 ÷ 2 × 5) + (120 × 0.4 × 7) +			M1 for a complete method to find the total income
		((120 - '60' - '48') × 8) (= 732) or			·
		$(120 \div 2 \times 5) + (120 \times 0.4 \times 7) +$			
		(120 × 0.1 × 8) (= 732) or			
		'300' + '336' + '96' (= 732)			
		e.g. '732'-'480' '480' ×100 or			M1 for a complete method to find the percentage profit
		'252' ÷ '480' × 100 or			
		$\left(\frac{'732'}{'480'} \times 100\right) - 100 \text{ or } 152.5 - 100 \text{ or}$			
		$\left(\frac{'732'}{'480'}-1\right) \times 100 \text{ or } 0.525 \times 100$			
			52.5	5	A1 accept 53
	(b)	e.g. 1 + 0.2 (= 1.2) or			M1
		100(%) + 20(%) (= 120(%)) or			

$\frac{15}{120}$ (= 0.125) oe			
e.g. 15 ÷ 1.2 or 15 ÷ 120 × 100 or 15 × 100 ÷ 120			M1 dep
	12.5(0)	3	A1 accept (£)12.5, (£)12.50p, 1250p if the £ sign is crossed out
			Total 8 marks

5	(a)	4 × 120 (= 480)			M1
ALT		e.g. 120 ÷ 2 × 1 (= 60) or 120 × 0.4 × 3 (= 144) or (120 - '60' - '48') × 4 (= 48) or			M1 for a method to find the profit of one of the books
		$120 \times 0.1 \times 4 (= 48)$ e.g. $(120 \div 2 \times 1) + (120 \times 0.4 \times 3) +$ $((120 - '60' - '48') \times 4) (= 252)$ or $(120 \div 2 \times 1) + (120 \times 0.4 \times 3) +$ $(120 \times 0.1 \times 4) (= 252)$ or (60' + '144' + '48' (= 252)			M1 for a complete method to find the total profit
		'252' ÷ '480' × 100 oe			M1 for a complete method to find the percentage profit
			52.5	5	A1 accept 53
	(b)	e.g. 1 + 0.2 (= 1.2) or 100(%) + 20(%) (= 120(%)) or $\frac{15}{120}$ (= 0.125) oe			M1
		e.g. 15 ÷ 1.2 or 15 ÷ 120 × 100 or 15 × 100 ÷ 120			M1 dep
			12.5(0)	3	A1 accept (£)12.5, (£)12.50p, 1250p if the £ sign is crossed out
					Total 8 marks

6	(a)	$\frac{15}{6}$ or $\frac{6}{15}$ or $\frac{4.2}{6}$ or $\frac{6}{4.2}$ oe 2.5 or 0.4 or 0.7 or 1.4(2857)			M1 for a correct scale factor, accept ratio notation eg 6 : 15
			10.5	2	A1 oe
	(b)	19.5 ÷ 2.5 or 19.5 × 0.4 oe or $4.2 \times \frac{19.5}{(a)}$			M1 If using <i>DF</i> ft their answer from part (a)
			7.8	2	A1 oe
	•				Total 4 marks

7		e.g. 30 × 26.8 (= 804) or 13 × 25 (= 325) or (26.8 – 25) × 30 or 1.8 × 30			M1 for finding the total marks for the boys or the total test marks
		e.g. (30 × 26.8 - 13 × 25) ÷ (30 - 13) (= 28.1764) or ('804' - '325') ÷ (30 - 13) (= 28.1764) or ('804' - '325' ÷ 17) (= 28.1764) or ((26.8 - 25) × 30) ÷ 17 + 25 (= 28.1764) or '1.8' × 30 ÷ 17 + 25 (= 28.1764)			M1 for a complete method to find the mean mark for the girls
			28.2	3	A1 accept 28.15 – 28.2 (accept without working) (Accept 28 from complete working)
	•				Total 3 marks

8	(x) × 1000 or (x) ÷ 60 or (x) ÷ 60 ÷ 60 or (x) × 1000 ÷ 60 oe			M1 for at least one of × 1000 or \div 60 or $\frac{5}{18}$ oe
	$x \times \frac{1000}{60 \times 60}$ oe			M1 (dep) for a complete correct method
		$\frac{5}{18}x$	3	A1 accept $0.27x$ or $0.27x$ or $\frac{x}{3.6}$ or $\frac{1}{3.6}x$
				Total 3 marks

Using	g elim	ination then subs	stitution			
9		e.g. x + 2y = -0.5 + 6x - 2y = 32 (7x = 31.5)	e.g. 3x + 6y = -1.5 -3x - y = 16 (7y = -17.5)			M1 for a correct method to eliminate <i>x</i> or <i>y</i> : coefficients of <i>x</i> or <i>y</i> the same and correct operation to eliminate selected variable (condone any one arithmetic error)
		e.g. $4.5' + 2y = -0.5$ or $3 \times 4.5' - y = 16$	-0.5			M1 (dep) for substituting their value found of one variable into one of the equations or for repeating above method to find second variable
				x = 4.5 y = -2.5	3	A1 (dep on first M1) for both solutions
						Total 3 marks

Usir	ng	substitution				
9		3(-0.5 - 2y) - y = 16 (7y = -17.5) or $\frac{16 + y}{3} + 2y = -0.5$	$3x - \left(\frac{-0.5 - x}{2}\right) = 16$ $(7x = 31.5)$ or $x + 2(3x - 16) = -0.5$			M1 for correctly writing <i>x</i> or <i>y</i> in terms of the other variable and correctly substituting
		(7y = -17.5)	(7x = 31.5)			
		e.g. $x = -0.5 - 2' - 2.5'$ or $x = \frac{16 + ' - 2.5'}{3}$	e.g. $y = \frac{-0.5 - '4.5'}{2}$ or y = 3'4.5' - 16			M1 (dep) for substituting their value found of one variable into one of the equations
				x = 4.5 y = -2.5	3	A1 (dep on first M1) for both solutions
,				-		Total 3 marks

10	(a)		y = 5x - 3 oe	2	B2 fully correct equation eg $y = 5x + -3$ or $y3 = 5(x - 0)$
					If not B2 then B1 for
					y = 5x or $y = 5x + a$ or $y = bx - 3$ or (L=) $5x - 3$
	(b)	$x \ge 0, x \le 2, y \ge 1, y \le 3 \text{ or}$	$0 \le x \le 2$ $1 \le y \le 3$	2	B2 fully correct oe
			y _ s		(B1 for 2 or 3 out of 4 inequalities correct)
					(Treat double-ended inequalities as two separate inequalities)
					(SC B2 $y > 3$, $y < 1$, $x < 0$, $x > 2$)
					Accept <, ≤, > and ≥ throughout
					Total 4 marks

11	(a)	$\pm (7.7 \times 10^4 - 9.5 \times 10^3)$ or $\pm (7.7 \times 10^4 - 0.95 \times 10^4)$ or $\pm (77\ 000 - 9\ 500)$ or $\pm 67\ 500$ oe			M1 for clearly subtracting the correct values
			6.75×10^4	2	A1 allow -6.75×10^4 allow $\pm 6.8 \times 10^4$
	(b)	$(8.3 \times 10^3) \times 50 (= 415\ 000\ or\ 4.15 \times 10^5)$ or $(4.2 \times 10^4) \div 50 (= 840\ or\ 8.4 \times 10^2)$ or $(4.2 \times 10^4) \div (8.3 \times 10^3) (= 5(.060))$			M1 for a relevant calculation
			No supported by correct comparabl e figures in the same form	2	A1 for NO and 415 000 and 42 000 or NO and 4.15 × 10 ⁵ NO and 840 and 8 300 or NO and 8.4 × 10 ² NO and 5(.060)
	(c)	1.15 × 0.92 (= 1.058) oe or 105.8 $\frac{n \times 1.15 \times 0.92}{n} \text{ where } n \text{ is a}$ number or variable e.g. $\frac{200 \times 1.15 \times 0.92}{200}$			M1 condone <i>x</i> × 1.15 × 0.92 oe
			5.8	2	A1 NB5.8 (M1A0) decrease of 5.8% (M1A0)

				Total 6 marks
12	$(ED =) \frac{16.7}{\tan 43}$ (=17.90855)			M1 for a correct method to find length <i>CD</i> or <i>ED</i>
	or $(CD =) \frac{16.7}{\sin 43}$ (= 24.48686)			(<i>E</i> is the point on line <i>AD</i> from where a vertical line is drawn downwards from point <i>C</i>)
				NB. Sine rule may be used
	$(ED =) \frac{16.7}{\tan 43}$ (=17.90855)			M1 for a correct method to find both CD and ED or
	and			use of Pythagoras theorem
	$(CD =) \frac{16.7}{\sin 43}$ (= 24.48686)			$(CD =) \sqrt{16.7^2 + '17.90'^2}$ (= 24.48686)
				$(ED =) \sqrt{24.48^2 - 16.7^2}$ (=17.90855)
				NB. Sine rule must be in the correct form to give the answer
	16.7 + 21.2 × 2 + '24.5' + '17.9' (= 101.495)			M1 (dep on M2) complete method with no extra sides
		101	4	A1 accept 101 – 102
				Total 4 marks

13	(a)		7, 17, 29, 48, 66, 80	1	B1 cao
	(b)		10,00,00		M1 ft from (a) if only one addition error
					for at least 4 points plotted correctly at end of interval or
					for all 6 points plotted consistently within each interval in the frequency table at the correct height
			Correct cf	2	A1 accept curve or line segments
			graph		accept curve that is not joined to (0,0)
	(c)		17 – 19	1	B1 ft from a cumulative frequency graph dep on M1 in (b)
	(d)	For correct use 20 and 60 (20.25 and 60.75) indicated (horizontal line or mark) on the cumulative frequency axis and their readings taken from time taken axis e.g. readings of 11–13 and 22–24 indicated on horizontal axis or 23 – 12			M1 for a complete method to ft from a cumulative frequency graph dep on M1 in (b)
			9 – 13	2	A1 accept 9 – 13
					ft from a cumulative frequency graph dep on M1 in (b)
					Total 6 marks

14				M2 for
				$\sqrt{5^2 + (-12)^2}$ or $\sqrt{(-5)^2 + 12^2}$ or $\sqrt{5^2 + 12^2}$
				If not M2 then M1 for
				$\begin{pmatrix} 6 \\ -9 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix} \text{ or } \begin{pmatrix} 6 \\ -9 \end{pmatrix} + \begin{pmatrix} -1 \\ -3 \end{pmatrix} (= \begin{pmatrix} 5 \\ -12 \end{pmatrix}) \text{ or }$
				or (1) (6) (5)
				$ \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 6 \\ -9 \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} -6 \\ 9 \end{pmatrix} (= \begin{pmatrix} -5 \\ 12 \end{pmatrix}) $
		13	3	A1
				Total 3 marks

15	$y^2 = \frac{3x - 2}{x + 1}$			M1 squaring both sides to get a correct equation
	$xy^2 + y^2 = 3x - 2$ oe			M1 for multiplying by the denominator and expanding the bracket
	$y^2 + 2 = x(3 - y^2)$ oe			M1 for isolating terms in <i>x</i> and factorising the correct expression of the equation
		$x = \frac{2+y^2}{3-y^2}$	4	A1 accept $x = \frac{-2 - y^2}{y^2 - 3}$ oe
				Total 4 marks

	$\frac{4+\sqrt{8}}{\sqrt{2}-1} \times \frac{(\sqrt{2}+1)}{(\sqrt{2}+1)}$ e,g, $\frac{4\sqrt{2}+4+\sqrt{8}\sqrt{2}+\sqrt{8}}{2-1} \text{ or }$ $\frac{4\sqrt{2}+4+4+\sqrt{8}}{2-1} \text{ or }$ $\frac{4\sqrt{2}+4+\sqrt{16}+\sqrt{8}}{2-1} \text{ or }$ $= 4\sqrt{2}+4+4+\sqrt{8} \text{ oe }$			and denominator by $\sqrt{2} + 1$ (or $-\sqrt{2} - 1$) condone missing brackets M1 (dep) for expansion of numerator with at least 3 terms correct oe Using $-\sqrt{2} - 1$ e.g. $\frac{-4\sqrt{2} - 4 - \sqrt{8}\sqrt{2} - \sqrt{8}}{-2 + 1} \text{ or } \frac{-4\sqrt{2} - 4 - 4 - \sqrt{8}}{-2 + 1} \text{ or } \frac{-4\sqrt{2} - 4 - \sqrt{16} - \sqrt{8}}{-2 + 1}$
		$8 + 6\sqrt{2}$	3	A1 (dep on M2) or for stating $a = 8$ and $b = 6$
		8 + 6√ 2	3	A1 (dep on M2) or for stating $a = 8$ and $b = 6$ Total 3 mar

17	(a)	$y = kx^3 \text{ or } ky = x^3$			M1 (NB. Not for $y = x^3$)	M2 for	
					Constant of proportionality	$20h = k \times h^3$ oe	
					must be a symbol such as <i>k</i>		
		$20h = k \times h^{3}$ oe			M1 substitution of <i>x</i> and <i>y</i> into		
					a correct formula		
			$y = \frac{20x^3}{h^2}$	3	A1 for $y = \frac{20x^3}{h^2}$ oe		
					Award 3 marks if answer is $y = kx^3$ and $k = \frac{20}{h^2}$ oe is seen in part		
					(a) or in part (b)		
	(b)	$\sqrt[3]{67.5h \div \frac{20}{h^2}}$, oe			M1 ft, dep on at least M1 in part	(a), complete method to find x	
			1.5 <i>h</i>	2	A1 accept $\frac{3}{2}h$ or $\frac{3h}{2}$		
						Total 5 marks	

18	x² oe				M1 for finding an expression for the area of one face
	or				
	<i>x</i> (12 − 3 <i>x</i>) oe				
	$x^2 + x^2 + 48x - 12$	$2x^2 (= 48x - 10x^2)$			M1 for a complete expression for A (6 sides) with brackets expanded
	'48 – 20x' = 0	'-10'[(x - '2.4') ² - '2.4' ²] oe			M1 for differentiating a correct expression for A (allow 1 error) and equating to zero
					or
					completing the square
	(x = 2.4) $48 \times '2.4' - 10 \times$	'-10' × - '2.4' ² or '-10' × - '5.76'			M1 ft if previous M1 awarded
	'2.4' ²	3.70			for isolating x and substituting into A
					or
					finding max value of A from completing the square
			57.6	5	A1 accept 58 from correct working
'					Total 5 marks

19	250 = 0.5 × 26 × AC × sin(39) oe			M1 for using the area formula correctly
				If this mark is awarded then ft on the remaining M marks
	(AC=) 30.5(5579) or 30.6			A1
	$\frac{\left(AB\right)}{\sin 47} = \frac{'30.56'}{\sin 95} \text{ oe}$			M1 dep on M1 for correct substitution into sine rule
	$\frac{(BC)}{\sin(180-95-47)} = \frac{'30.56'}{\sin 95} \text{ oe}$			
	$(AB =) \frac{30.56}{\sin 95} \times \sin 47$			M1 (dep on previous M marks) for a correct method to find a missing length or
	(= 22.4(3407)) or $(BC =) \frac{30.56}{\sin 95} \times \sin (180 - 95 - 47)$			sight of values in the ranges
	(= 18.8(8524))			22.39 – 22.47 for <i>AB</i> 18.8 – 18.92 for <i>BC</i>
	250 + 0.5 × '30.56' × '22.43' × sin(180 – 95 – 47) (= 461.03) or 250 + 0.5 × '30.56' × '18.88' × sin(47) (= 461.03)			M1 for a complete method to find total area
	3.11(±7) (= ±01.03)	461	6	A1 accept 461 - 462
				Total 6 marks

20	$x^2 - 3x(9 - x) + 2(9 - x)^2$ (= 0)	$(9-y)^2 - 3y(9-y) + 2y^2$ (=			M1 substitution of linear equation into quadratic
	e.g. $6x^2 - 63x + 162 (= 0)$ or $2x^2 - 21x + 54 (= 0)$	e.g. $6y^2 - 45y + 81 (= 0)$ or $2y^2 - 15y + 27 (= 0)$			A1 (dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c = 0$
	allow $2x^2 - 21x = -54$ oe	allow $2y^2 - 15y = -27$ oe			allow $ax^2 + bx = c$
	$x = \frac{-(-21) \pm \sqrt{(-21)^2 - 4 \times 2 \times 54}}{2 \times 2}$ e.g.	e.g. $(2y - 9)(y - 3) (= 0)$ $y = \frac{-(-15) \pm \sqrt{(-15)^2 - 4 \times 2 \times 27}}{2 \times 2}$ e.g. $2\left(\left(x - \frac{15}{4}\right)^2 - \left(\frac{15}{4}\right)^2\right) = -27$			M1 (dep on M1) for a complete method to solve their 3-term quadratic equation (allow one sign error and some simplification – allow as far as $\frac{21\pm\sqrt{441-432}}{4}$)
	x = 4.5 and $x = 6$	y = 4.5 and $y = 3$			A1 (dep on M1) both <i>x</i> -values or both <i>y</i> -values
			(4.5, 4.5)	5	A1 (dep on M1) oe
			and (6, 3)		Must be paired correctly
					Total 5 marks

20 Alt	(x - y)(x -	- 2 <i>y</i>) (= 0)			M1 for a method to factorise C
	(x - (9 - x))(x - 2(9 - x)) (= 0)	(9 - y - y)(9 - y - 2y) (= 0)			A1 (dep M1) substitution of L into their factorised C
	(2x - 9)(3x - 18) (= 0) oe	(9 – 2 <i>y</i>)(9 – 3 <i>y</i>) (= 0) oe			M1 (dep on M1)
	x = 4.5 and $x = 6$	y = 4.5 and y = 3			A1 (dep on M1) both <i>x</i> -values or both <i>y</i> -values
			(4.5, 4.5) and (6, 3)	5	A1 (dep on M1) oe Must be paired correctly
			, , , ,		Total 5 marks

21	e.g. $(AC =) \sqrt{(4x)^2 + (2x)^2} (= \sqrt{20}x) \text{ or}$ $(AC =) \sqrt{(4)^2 + (2)^2} (= \sqrt{20}) \text{ or}$ $(AF =) \sqrt{(4)^2 + (2)^2 + (3)^2} (= \sqrt{29}) \text{ or}$ $(AF =) \sqrt{(\sqrt{20})^2 + (3)^2} (= \sqrt{29}) \text{ or}$			M1 for a method to find an expression for length AC or length AF with or without X or X can represent any number e.g. $AB:BC:CF=2:1:1.5$ $AC^2=\sqrt{2^2+1^2}\left(=\sqrt{5}\right)$
	e.g. $(CAF =) \tan^{-1} \left(\frac{3x}{\sqrt{20}x'} \right) (= 33.854) \text{ or}$ $(CAF =) \tan^{-1} \left(\frac{3}{\sqrt{20}'} \right) (= 33.854) \text{ or}$ $(CAF =) \cos^{-1} \left(\frac{\sqrt{20}'}{\sqrt{29}'} \right) (= 33.854) \text{ or}$ $(CAF =) \sin^{-1} \left(\frac{3}{\sqrt{29}'} \right) (= 33.854)$			M1 for a complete method to find angle <i>CAF</i> using length <i>AC</i> or for a complete method to find angle <i>CAF</i> using length <i>AF</i> with or without <i>x</i> or x can represent any number $AB:BC:CF=2:1:1.5$ $(CAF=) \tan^{-1}\left(\frac{1.5}{\sqrt{5}}\right) (= 33.854)$
		33.9°	3	A1 answers in the range 33.85 – 33.9
				Total 3 marks

				Total 3 marks
		$\frac{x(3x-1)}{2x-5}$	3	A1 accept $\frac{3x^2 - x}{2x - 5}$ oe Do not ISW
				denominator into 2 brackets where one of the factors must be $(2x + 5)$
	and (2x + 3)(2x - 3) 6e			numerator into 2 or 3 factors where one of the factors must be $(2x + 5)$
	$x(2x + 5)(3x - 1)$ or $(2x + 5)(3x^2 - x)$ and $(2x + 5)(2x - 5)$ oe			M1 for a correct factorisation of the
				denominator into 2 brackets where one of the factors must be $(2x + 5)$
				or
	or (2x + 5)(2x – 5) oe			numerator into 2 or 3 factors where one of the factors must be $(2x + 5)$
22	$x(2x + 5)(3x - 1)$ or $(2x + 5)(3x^2 - x)$			M1 for a correct factorisation of the

23	RG and GR method	RR and GG method			
	$\frac{3}{t} \times \frac{t-3}{t-1} \text{ or } \frac{t-3}{t} \times \frac{3}{t-1}$	$\frac{3}{t} \times \frac{2}{t-1} \text{ or } \frac{t-3}{t} \times \frac{t-4}{t-1}$			M1 for one correct product
	$\frac{\frac{3}{t} \times \frac{t-3}{t-1}}{\frac{t-3}{t} \times \frac{3}{t-1}} = \frac{12}{35} \text{ or }$ $2 \times \frac{3}{t} \times \frac{t-3}{t-1} = \frac{12}{35} \text{ oe}$	$\frac{\frac{3}{t} \times \frac{2}{t-1}}{\frac{t-3}{t} \times \frac{t-4}{t-1}} = \frac{23}{35}$			M1 dep on M1 for a correct equation
	e.g. $2t^2 - 37t + 105 (= 0)$ or allow $2t^2 - 37t = -105$				A1 (dep on M2) writing the correct quadratic expression in form $ax^2 + bx + c$ (= 0) allow $ax^2 + bx = c$
	e.g. $(2t - 7)(t - 15) = 0$ e.g. $t = \frac{-(-37) \pm \sqrt{(-37)^2 - 4 \times 2 \times 10^2}}{2 \times 2}$ e.g. $2\left(\left(t - \frac{37}{4}\right)^2 - \left(\frac{37}{4}\right)^2\right) = 0$	= -105			M1 (dep on A1) for a complete method to solve the 3-term quadratic equation (allow one sign error and some simplification – allow as far as $\frac{37 \pm \sqrt{1369 - 840}}{4}$) or
			12	5	Can be implied by answers of 15 (and $\frac{7}{2}$) A1 (dep on A1) cao
			12	, ,	Total 5 marks

23 Alt	RG and GR method	RR and GG method			
	$\frac{3}{x+3} \times \frac{x}{x+2} \text{ or }$ $\frac{x}{x+3} \times \frac{3}{x+2}$	$\frac{3}{x+3} \times \frac{2}{x+2} \text{ or }$ $\frac{x}{x+3} \times \frac{x-1}{x+2}$			M1 for one correct product
	$\frac{3}{x+3} \times \frac{x}{x+2} + $ $\frac{x}{x+3} \times \frac{3}{x+2} = \frac{12}{35} \text{ or }$ $2 \times \frac{3}{x+3} \times \frac{x}{x+2} = \frac{12}{35} \text{ oe}$	$\frac{x}{x+3} \times \frac{x-1}{x+2}$ $\frac{3}{x+3} \times \frac{2}{x+2} +$ $\frac{x}{x+3} \times \frac{x-1}{x+2} = \frac{23}{35}$			M1 dep on M1 for a correct equation
	e.g. $2x^2 - 25x + 12 (= 0)$ o allow $2x^2 - 25x = -12$	r			A1 (dep on M2) writing the correct quadratic expression in form $ax^2 + bx + c$ (= 0) allow $ax^2 + bx = c$
	e.g. $(2x - 1)(x - 12) = 0$ e.g. $x = \frac{-(-25) \pm \sqrt{(-25)^2 - 4 \times 2}}{2 \times 2}$ e.g. $2\left(\left(x - \frac{25}{4}\right)^2 - \left(\frac{25}{4}\right)^2\right)$	= -12			M1 (dep on A1) for a complete method to solve the 3-term quadratic equation (allow one sign error and some simplification – allow as far as $\frac{25\pm\sqrt{625-96}}{4}$) or can be implied by answers of 12 (and $\frac{1}{2}$
			12	5	A1 (dep on A1) cao

24	(a)		13	1	B1
	(b)	$y = 2(x^2 - 10x) + 9$ or			M1 for a correct equation for a first
		$y = 2\left(x^2 - 10x + \frac{9}{2}\right)$			step in order to complete the square
		e.g.			M1 dep
		$y = 2((x-5)^2 - 5^2) + 9$ or			
		$y = 2\left((x-5)^2 - 5^2 + \frac{9}{2}\right)$ or $y = 2(x-5)^2 - 41$ oe			
		$y = 2(x-5)^2 - 41$ oe			
		$(x-5)^2 = \frac{y+41}{2}$ oe			M1
			$5 + \sqrt{\frac{x+41}{2}}$	4	A1 oe
	1				Total 5 marks
Note	e: Allov	w candidates to swap x and y when finding the inv	erse	•	

24 Alt	(a)		13	1	B1
	(b)	$2x^2 - 20x + (9 - y) = 0$			M1 for a correct first step
		$x = \frac{20 \pm \sqrt{400 - 8(9 - y)}}{4} \text{ or }$ $x = \frac{20 + \sqrt{400 - 8(9 - y)}}{4}$			M1 dep
		$x = 5 \pm \sqrt{\frac{41+y}{2}} \text{ oe}$			M1
			$5 + \sqrt{\frac{x+41}{2}}$	4	A1 oe
					Total 5 marks
Note	e: Allo	w candidates to swap x and y when finding the inv	verse		

24 Alt	(a)		13	1	B1
	(b)	$2x^2 - 20x + (9 - y)(=0)$			M1 for a correct first step
		e.g. $2((x-5)^2 - 5^2) + 9 - y = 0 \text{ or}$ $2((x-5)^2 - 5^2 + \frac{9}{2}) - y = 0 \text{ or}$ $2(x-5)^2 - 41 - y = 0$			M1 dep
		$(x-5)^2 = \frac{y+41}{2}$ oe			M1
			$5+\sqrt{\frac{x+41}{2}}$	4	A1 oe
	1				Total 5 marks

Note: Allow candidates to swap x and y when finding the inverse