You will need to use a calculator for this worksheet

1

The diagram shows the curve $y=x^{2}$ which passes through the point $A(1,1)$ and the point B ．
a Copy and complete the table to find the gradient of the chord $A B$ when the x－coordinate of B takes each of the given values．

x－coordinate of B	y－coordinate of B	gradient of $A B$
2	4	$\frac{4-1}{2-1}=3$
1.1	1.21	
1.01		
1.001		

b Suggest a value for the gradient of the tangent to the curve $y=x^{2}$ at the point $(1,1)$ ．
c Repeat part a using $0,0.9,0.99$ and 0.999 as the x－coordinates of B and comment on your answer to part \mathbf{b} ．

2 Use a similar table of values to that in question $\mathbf{1}$ to find a value for the gradient of the tangent to the curve $y=x^{2}$ at the point A when A has the coordinates
a $(2,4)$
b $(4,16)$
c $(1.5,2.25)$
d $(-3,9)$

3 a Using your answers to questions 1 and 2，suggest an expression in terms of x for the gradient of the curve $y=x^{2}$ at the point (x, y) ．
b Write down the gradient of the curve $y=x^{2}$ at the points
i $(6,36)$
ii $(2.4,5.76)$
iii $(-3.2,10.24)$

4 By considering the gradient of a suitable sequence of chords，find a value for the gradient of each curve at the given point．
a $y=x^{4}$ at $(1,1)$
b $y=x^{2}-5 x+3$ at $(2,-3)$
c $y=\sqrt{x}$ at $(4,2)$
d $y=\frac{2}{x}$ at $(2,1)$

5 a By considering the gradient of a suitable sequence of chords，find a value for the gradient of the curve $y=x^{3}$ at the points
i $(1,1)$
ii $(2,8)$
iii $(3,27)$
b Suggest an expression of the form $k x^{n}$ for the gradient of the curve $y=x^{3}$ at the point (x, y) ．
c Find the gradient of the curve $y=x^{3}$ at the points
i $(4,64)$
ii $(-2,-8)$
iii（1．5，3．375）

1 Differentiate with respect to x
a x^{2}
b x^{4}
c x
d x^{9}
e x^{-3}
f x^{-1}
g $4 x^{2}$
h $7 x$
i $2 x^{5}$
j 3
k $8 x^{-2}$
l $11 x^{-4}$

2 Find $\frac{d y}{d x}$
a $y=x^{5}+x^{2}$
b $y=x+x^{3}$
c $y=x^{4}+2$
d $y=x^{6}-2 x$
e $y=6 x^{3}+5 x^{-2}$
f $y=x^{2}-4 x+1$
g $y=x^{-1}-x^{-5}$
h $y=4 x^{3}+3 x^{-4}$

3 Differentiate with respect to t
a t^{6}
b $5 t^{-3}$
c $t^{\frac{1}{2}}$
d $t^{\frac{2}{3}}$
e $\frac{3}{4} t^{2}$
f $8 t^{\frac{1}{4}}$
g $2 t^{\frac{7}{2}}$
h $t^{-\frac{1}{5}}$
i $\frac{1}{2} t^{\frac{6}{5}}$
j $t^{-\frac{3}{2}}$
k $12 t^{-\frac{5}{4}}$
l $\frac{1}{6} t^{\frac{4}{3}}$

4 Find $\mathrm{f}^{\prime}(x)$
a $\mathrm{f}(x)=2 x+\frac{1}{3} x^{6}$
b $\mathrm{f}(x)=x^{\frac{3}{2}}-5$
c $\mathrm{f}(x)=x+4 x^{\frac{1}{2}}$
d $\mathrm{f}(x)=6 x^{\frac{5}{3}}-x^{-4}$
e $\mathrm{f}(x)=7+x^{-\frac{4}{5}}$
f $\mathrm{f}(x)=2 x^{\frac{1}{6}}+x^{\frac{3}{4}}$
g $\mathrm{f}(x)=3 x^{-1}-5 x^{-\frac{3}{2}}$
h $\mathrm{f}(x)=2-7 x^{-1}+x^{-\frac{8}{3}}$

5 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
a $y=\sqrt{x}$
b $y=4-\frac{1}{x}$
c $y=3 x^{2}+\sqrt[3]{x}$
d $y=9 x+\frac{3}{x}$
e $y=\frac{1}{4 x}-\frac{1}{x^{2}}$
f $y=\frac{6}{\sqrt[4]{x}}$
g $y=\sqrt{x^{5}}$
h $y=8 \sqrt{x}+\frac{4}{3 x^{2}}$

6 Find $\frac{\mathrm{d} s}{\mathrm{~d} t}$
a $\quad s=t(t+3)$
b $s=(t-2)^{2}$
c $s=5 t\left(t^{3}+4 t\right)$
d $s=t^{2}\left(7 t-t^{-1}\right)$
e $s=(t+1)(t+6)$
f $s=(t-4)(t+2)$
g $s=t\left(t^{4}+3 t^{2}+9\right)$
h $s=t(t-1)(2 t-3)$

7 Find $\frac{d y}{d x}$
a $y=\sqrt{x}(x-4)$
b $y=\frac{x^{3}-2 x}{x}$
c $y=\frac{4 x^{3}+x}{x^{2}}$
d $y=\frac{x+3}{\sqrt{x}}$
e $y=\frac{4-x^{3}}{2 x}$
f $y=\frac{5+\sqrt{x}}{x^{2}}$
g $y=\frac{9 x-2}{3 x}$
h $y=\frac{8 x+x^{3}}{4 \sqrt{x}}$

8 In each case，find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ ．
a $y=4 x^{2}-x+3$
b $y=x^{3}+5 x^{2}+2 x-6$
c $y=8-\frac{2}{x}$
d $y=2 x^{4}+3 x^{2}-9$
e $y=\frac{3 x^{6}-4}{x^{2}}$
f $y=6 x^{\frac{1}{2}}-x^{-\frac{1}{2}}$

1 Find the gradient at the point with x－coordinate 3 on each of the following curves．
a $y=x^{3}$
b $y=4 x-x^{2}$
c $y=2 x^{2}-8 x+3$
d $y=\frac{3}{x}+2$

2 Find the gradient of each curve at the given point．
a $y=3 x^{2}+x-5$
$(1,-1)$
b $y=x^{4}+2 x^{3}$
c $y=x(2 x-3)$
$(2,2)$
d $y=x^{2}-2 x^{-1}$
e $y=x^{2}+6 x+8$
$(-3,-1)$
f $y=4 x+x^{-2}$
$(-2,0)$

3 Evaluate $\mathrm{f}^{\prime}(4)$ when
a $\mathrm{f}(x)=(x+1)^{2}$
b $\mathrm{f}(x)=x^{\frac{1}{2}}$
c $\mathrm{f}(x)=x-4 x^{-2}$
d $\mathrm{f}(x)=5-6 x^{\frac{3}{2}}$

4 The curve with equation $y=x^{3}-4 x^{2}+3 x$ crosses the x－axis at the points A, B and C ．
a Find the coordinates of the points A, B and C ．
b Find the gradient of the curve at each of the points A, B and C ．
5 For the curve with equation $y=2 x^{2}-5 x+1$ ，
a find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ ，
b find the value of x for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=7$ ．
6 Find the coordinates of the points on the curve with the equation $y=x^{3}-8 x$ at which the gradient of the curve is 4 ．

7 A curve has the equation $y=x^{3}+x^{2}-4 x+1$ ．
a Find the gradient of the curve at the point $P(-1,5)$ ．
Given that the gradient at the point Q on the curve is the same as the gradient at the point P ， b find，as exact fractions，the coordinates of the point Q ．

8 Find an equation of the tangent to each curve at the given point．
a $y=x^{2}$
b $y=x^{2}+3 x+4$
c $y=2 x^{2}-6 x+8$
d $y=x^{3}-4 x^{2}+2$

9 Find an equation of the tangent to each curve at the given point．Give your answers in the form $a x+b y+c=0$ ，where a, b and c are integers．
a $y=3-x^{2}$
$(-3,-6)$
b $y=\frac{2}{x}$
c $y=2 x^{2}+5 x-1$
d $y=x-3 \sqrt{x}$

10 Find an equation of the normal to each curve at the given point．Give your answers in the form $a x+b y+c=0$ ，where a, b and c are integers．
a $y=x^{2}-4$
$(1,-3)$
b $y=3 x^{2}+7 x+7$
c $y=x^{3}-8 x+4$
$(2,-4)$
d $y=x-\frac{6}{x}$

11 Find，in the form $y=m x+c$ ，an equation of
a the tangent to the curve $y=3 x^{2}-5 x+2$ at the point on the curve with x－coordinate 2 ，
b the normal to the curve $y=x^{3}+5 x^{2}-12$ at the point on the curve with x－coordinate -3 ．
12 A curve has the equation $y=x^{3}+3 x^{2}-16 x+2$ ．
a Find an equation of the tangent to the curve at the point $P(2,-10)$ ．
The tangent to the curve at the point Q is parallel to the tangent at the point P ．
b Find the coordinates of the point Q ．
13 A curve has the equation $y=x^{2}-3 x+4$ ．
a Find an equation of the normal to the curve at the point $A(2,2)$ ．
The normal to the curve at A intersects the curve again at the point B ．
b Find the coordinates of the point B ．
14

$$
\mathrm{f}(x) \equiv x^{3}+4 x^{2}-18
$$

a Find $\mathrm{f}^{\prime}(x)$ ．
b Show that the tangent to the curve $y=\mathrm{f}(x)$ at the point on the curve with x－coordinate -3 passes through the origin．

15 The curve C has the equation $y=6+x-x^{2}$ ．
a Find the coordinates of the point P ，where C crosses the positive x－axis，and the point Q ， where C crosses the y－axis．
b Find an equation of the tangent to C at P ．
c Find the coordinates of the point where the tangent to C at P meets the tangent to C at Q ．
16 The straight line l is a tangent to the curve $y=x^{2}-5 x+3$ at the point A on the curve． Given that l is parallel to the line $3 x+y=0$ ，
a find the coordinates of the point A ，
b find the equation of the line l in the form $y=m x+c$ ．
17 The line with equation $y=2 x+k$ is a normal to the curve with equation $y=\frac{16}{x^{2}}$ ．
Find the value of the constant k ．
18 A ball is thrown vertically downwards from the top of a cliff．The distance，s metres，of the ball from the top of the cliff after t seconds is given by $s=3 t+5 t^{2}$ ．
Find the rate at which the distance the ball has travelled is increasing when
a $t=0.6$ ，
b $s=54$ ．
19 Water is poured into a vase such that the depth，$h \mathrm{~cm}$ ，of the water in the vase after t seconds is given by $h=k t^{\frac{1}{3}}$ ，where k is a constant．Given that when $t=1$ ，the depth of the water in the vase is increasing at the rate of 3 cm per second，
a find the value of k ，
b find the rate at which h is increasing when $t=8$ ．

