1

You will need to use a calculator for this worksheet

The diagram shows the curve $y = x^2$ which passes through the point A (1, 1) and the point B.

a Copy and complete the table to find the gradient of the chord *AB* when the *x*-coordinate of *B* takes each of the given values.

<i>x</i> -coordinate of <i>B</i>	<i>y</i> -coordinate of <i>B</i>	gradient of AB
2	4	$\frac{4-1}{2-1} = 3$
1.1	1.21	
1.01		
1.001		

- **b** Suggest a value for the gradient of the tangent to the curve $y = x^2$ at the point (1, 1).
- **c** Repeat part **a** using 0, 0.9, 0.99 and 0.999 as the *x*-coordinates of *B* and comment on your answer to part **b**.
- 2 Use a similar table of values to that in question 1 to find a value for the gradient of the tangent to the curve $y = x^2$ at the point A when A has the coordinates
 - **a** (2, 4) **b** (4, 16) **c** (1.5, 2.25) **d** (-3, 9)
- 3 a Using your answers to questions 1 and 2, suggest an expression in terms of x for the gradient of the curve $y = x^2$ at the point (x, y).
 - **b** Write down the gradient of the curve $y = x^2$ at the points

4 By considering the gradient of a suitable sequence of chords, find a value for the gradient of each curve at the given point.

a
$$y = x^4$$
 at (1, 1)
b $y = x^2 - 5x + 3$ at (2, -3)

- **c** $y = \sqrt{x}$ at (4, 2) **d** $y = \frac{2}{x}$ at (2, 1)
- 5 a By considering the gradient of a suitable sequence of chords, find a value for the gradient of the curve $y = x^3$ at the points
 - **i** (1, 1) **ii** (2, 8) **iii** (3, 27)
 - **b** Suggest an expression of the form kx^n for the gradient of the curve $y = x^3$ at the point (x, y).
 - **c** Find the gradient of the curve $y = x^3$ at the points
 - i (4, 64) ii (-2, -8) iii (1.5, 3.375)

书山有路勤为径,学海无涯苦作舟。

DIFFERENTIATION

C1

Worksheet B

1	Differentiate with res	pect to x			
	a x^2 b x^4	c <i>x</i>	d x^9	e x^{-3}	f x^{-1}
	g $4x^2$ h $7x$	i $2x^5$	j 3	k $8x^{-2}$	$1 11x^{-4}$
2	Find $\frac{dy}{dx}$				
	$a y = x^5 + x^2$	b $y = x + x^3$	$\mathbf{c} y = x^4 + 2$	d y =	$=x^6-2x$
	e $y = 6x^3 + 5x^{-2}$	$\mathbf{f} y = x^2 - 4x + 1$	g $y = x^{-1} - x^{-2}$	⁵ h y ⁼	$=4x^3+3x^{-4}$
3	Differentiate with res	pect to t			
	a t^6 b $5t$	-3 c $t^{\frac{1}{2}}$	d $t^{\frac{2}{3}}$	$\mathbf{e} \frac{3}{4}t^2$	f $8t^{\frac{1}{4}}$
	g $2t^{\frac{7}{2}}$ h t^{-}	$\frac{1}{5}$ i $\frac{1}{2}t^{\frac{6}{5}}$	j $t^{-\frac{3}{2}}$	k $12t^{-\frac{5}{4}}$	$1 \frac{1}{6}t^{\frac{4}{3}}$
4	Find $f'(x)$				
	a $f(x) = 2x + \frac{1}{3}x^6$	b $f(x) = x^{\frac{3}{2}} - 5$	$\mathbf{c} \mathbf{f}(x) = x + 4$	$dx^{\frac{1}{2}}$ d f(x)	$x) = 6x^{\frac{5}{3}} - x^{-4}$
	e $f(x) = 7 + x^{-\frac{4}{5}}$	f $f(x) = 2x^{\frac{1}{6}} + x^{\frac{3}{4}}$	g $f(x) = 3x^{-1}$	$-5x^{-\frac{3}{2}}$ h f(x)	$x) = 2 - 7x^{-1} + x^{-\frac{8}{3}}$
5	Find $\frac{dy}{dx}$				
	a $y = \sqrt{x}$	b $y = 4 - \frac{1}{x}$	c $y = 3x^2 + \sqrt[3]{x^2}$	\sqrt{x} d y	$=9x+\frac{3}{x}$
	e $y = \frac{1}{4x} - \frac{1}{x^2}$	$\mathbf{f} y = \frac{6}{\sqrt[4]{x}}$	g $y = \sqrt{x^5}$	h y =	$= 8\sqrt{x} + \frac{4}{3x^2}$
6	Find $\frac{ds}{dt}$				
	$\mathbf{a} s = t(t+3)$	$\mathbf{b} s = (t-2)^2$	$\mathbf{c} s = 5t(t^3 + 4t^3)$	4 <i>t</i>) d <i>s</i> =	$=t^{2}(7t-t^{-1})$
	e $s = (t+1)(t+6)$	f $s = (t-4)(t+2)$	$\mathbf{g} s = t(t^4 + 3t)$	$t^2 + 9$) h s =	= t(t-1)(2t-3)
7	Find $\frac{dy}{dx}$				
	a $y = \sqrt{x} (x - 4)$	b $y = \frac{x^3 - 2x}{x}$	$\mathbf{c} y = \frac{4x^3 + x}{x^2}$	d y =	$=\frac{x+3}{\sqrt{x}}$
	$\mathbf{e} y = \frac{4 - x^3}{2x}$	$\mathbf{f} y = \frac{5 + \sqrt{x}}{x^2}$	$\mathbf{g} y = \frac{9x-2}{3x}$	h y =	$=\frac{8x+x^3}{4\sqrt{x}}$
8	In each case, find $\frac{dy}{dx}$	and $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.			
	$\mathbf{a} y = 4x^2 - x + 3$	$\mathbf{b} y = x^3 + 5x$	$x^{2} + 2x - 6$	c $y = 8 - \frac{2}{x}$	
	d $y = 2x^4 + 3x^2 - 9$	$\mathbf{e} y = \frac{3x^6 - 4}{x^2}$		$\mathbf{f} y = 6x^{\frac{1}{2}} - $	$x^{-\frac{1}{2}}$

www.CasperYC.club

DIFFERENTIATION

1 Find the gradient at the point with *x*-coordinate 3 on each of the following curves.

a
$$y = x^3$$
 b $y = 4x - x^2$ **c** $y = 2x^2 - 8x + 3$ **d** $y = \frac{3}{x} + 2$

2 Find the gradient of each curve at the given point.

a	$y = 3x^2 + x - 5$	(1, -1)	$\mathbf{b} y = x^4 + 2x^3$	(-2, 0)
c	y = x(2x - 3)	(2, 2)	d $y = x^2 - 2x^{-1}$	(2, 3)
e	$y = x^2 + 6x + 8$	(-3, -1)	f $y = 4x + x^{-2}$	$(\frac{1}{2}, 6)$

3 Evaluate f'(4) when

a $f(x) = (x + 1)^2$ **b** $f(x) = x^{\frac{1}{2}}$ **c** $f(x) = x - 4x^{-2}$ **d** $f(x) = 5 - 6x^{\frac{3}{2}}$

- 4 The curve with equation $y = x^3 4x^2 + 3x$ crosses the x-axis at the points A, B and C.
 - **a** Find the coordinates of the points A, B and C.
 - **b** Find the gradient of the curve at each of the points A, B and C.
- 5 For the curve with equation $y = 2x^2 5x + 1$,

a find
$$\frac{dy}{dx}$$
,

- **b** find the value of x for which $\frac{dy}{dx} = 7$.
- 6 Find the coordinates of the points on the curve with the equation $y = x^3 8x$ at which the gradient of the curve is 4.
- 7 A curve has the equation $y = x^3 + x^2 4x + 1$.
 - **a** Find the gradient of the curve at the point P(-1, 5).

Given that the gradient at the point Q on the curve is the same as the gradient at the point P,

- **b** find, as exact fractions, the coordinates of the point Q.
- 8 Find an equation of the tangent to each curve at the given point.

a
$$y = x^2$$
(2, 4)**b** $y = x^2 + 3x + 4$ (-1, 2)**c** $y = 2x^2 - 6x + 8$ (1, 4)**d** $y = x^3 - 4x^2 + 2$ (3, -7)

9 Find an equation of the tangent to each curve at the given point. Give your answers in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

a
$$y = 3 - x^2$$
 (-3, -6) **b** $y = \frac{2}{x}$ (2, 1)
c $y = 2x^2 + 5x - 1$ ($\frac{1}{2}$, 2) **d** $y = x - 3\sqrt{x}$ (4, -2)

10 Find an equation of the normal to each curve at the given point. Give your answers in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

a
$$y = x^2 - 4$$
 (1, -3)
b $y = 3x^2 + 7x + 7$ (-2, 5)
c $y = x^3 - 8x + 4$ (2, -4)
d $y = x - \frac{6}{x}$ (3, 1)

C1 DIFFERENTIATION

- 11 Find, in the form y = mx + c, an equation of
 - **a** the tangent to the curve $y = 3x^2 5x + 2$ at the point on the curve with x-coordinate 2,
 - **b** the normal to the curve $y = x^3 + 5x^2 12$ at the point on the curve with x-coordinate -3.
- 12 A curve has the equation $y = x^3 + 3x^2 16x + 2$.
 - **a** Find an equation of the tangent to the curve at the point P(2, -10).
 - The tangent to the curve at the point Q is parallel to the tangent at the point P.
 - **b** Find the coordinates of the point Q.
- 13 A curve has the equation $y = x^2 3x + 4$.
 - **a** Find an equation of the normal to the curve at the point A(2, 2).
 - The normal to the curve at A intersects the curve again at the point B.
 - **b** Find the coordinates of the point *B*.

$$f(x) \equiv x^3 + 4x^2 - 18.$$

a Find f'(x).

14

- **b** Show that the tangent to the curve y = f(x) at the point on the curve with *x*-coordinate -3 passes through the origin.
- 15 The curve C has the equation $y = 6 + x x^2$.
 - **a** Find the coordinates of the point *P*, where *C* crosses the positive *x*-axis, and the point *Q*, where *C* crosses the *y*-axis.
 - **b** Find an equation of the tangent to *C* at *P*.
 - **c** Find the coordinates of the point where the tangent to *C* at *P* meets the tangent to *C* at *Q*.
- 16 The straight line *l* is a tangent to the curve $y = x^2 5x + 3$ at the point *A* on the curve. Given that *l* is parallel to the line 3x + y = 0,
 - **a** find the coordinates of the point A,
 - **b** find the equation of the line *l* in the form y = mx + c.
- 17 The line with equation y = 2x + k is a normal to the curve with equation $y = \frac{16}{x^2}$. Find the value of the constant k.
- 18 A ball is thrown vertically downwards from the top of a cliff. The distance, *s* metres, of the ball from the top of the cliff after *t* seconds is given by $s = 3t + 5t^2$.

Find the rate at which the distance the ball has travelled is increasing when

- **a** t = 0.6, **b** s = 54.
- 19 Water is poured into a vase such that the depth, *h* cm, of the water in the vase after *t* seconds is given by $h = kt^{\frac{1}{3}}$, where *k* is a constant. Given that when t = 1, the depth of the water in the vase is increasing at the rate of 3 cm per second,
 - **a** find the value of *k*,
 - **b** find the rate at which *h* is increasing when t = 8.

www.CasperYC.club