Solomon Practice Paper

Pure Mathematics 6D

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	7	
2	9	
3	10	
4	11	
5	11	
6	13	
7	14	
Total:	75	

How I can achieve better:

1. Given that

$$
y=\frac{1}{1-x},
$$

prove by induction that

$$
\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=\frac{n!}{(1-x)^{n+1}}
$$

for all integers $n, n \geq 1$.
2. The variable y satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y+2, \quad y=0 \quad \text { at } \quad x=0 .
$$

(a) Given that $y \approx 2 h$ when $x=h$, use the approximation $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{-1}}{2 h}$ once to obtain an estimate for y as a function of h when $x=2 h$.
(b) Use the same approximation to show that an estimate for y when $x=3 h$ is given by

$$
y \approx 2 h\left(2 h^{3}+8 h^{2}+4 h+3\right) .
$$

(c) Hence find an estimate for y when $x=0.3$.
3. Given that

$$
z^{6}-z^{3} \sqrt{3}+1=0
$$

(a) find the possible values of z^{3}, giving your answers in the form $x+\mathbf{i} y$ where $x, y \in \mathbb{R}$.
(b) Hence find all possible values of z in the form $r \mathrm{e}^{\mathbf{i} \theta}$, where $r>0$ and $-\pi \leq \theta<\pi$.
4. (a) Write down the first three terms of the series of $\mathrm{e}^{x^{2}}$, in ascending powers of x.
(b) Hence, or otherwise, find the series expansion, in ascending powers of x up to and including the term in x^{4}, of $\frac{\mathrm{e}^{x^{2}}}{1+2 x}$.
(c) Hence find an estimate for the area of the region bounded by the x-axis, the lines $x=0$ and $x=0.2$, and the curve

$$
y=\frac{\mathrm{e}^{x^{2}}}{1+2 x},
$$

giving your answer to 3 significant figures.
5. The transformation $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ is represented by the matrix \mathbf{A} where

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & a & 1 \\
1 & 2 & -1 \\
3 & 1 & 1
\end{array}\right)
$$

(a) Find \mathbf{A}^{-1}, showing your working clearly and stating the condition for which \mathbf{A} is nonsingular.

Relative to a fixed origin O, the transformation T maps the point P onto the point Q.
When $a=-1, Q$ has position vector $5 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$.
(b) Find the position vector of P, showing your working clearly.
6. The planes Π_{1} and Π_{2} are defined by the equations $2 x-y+3 z=5$ and $x+4 y+z=-2$ respectively.
(a) Find, to the nearest degree, the acute angle between Π_{1} and Π_{2}.

The point A has coordinates $(2,1,-2)$.
(b) Find the perpendicular distance between A and Π_{1}.

The plane Π_{3} is perpendicular to Π_{1} and Π_{2} and the point with coordinates $(0,4,-1)$ lies on Π_{3}.
(c) Find the equation of Π_{3} in the form $a x+b y+c z=d$.
7. The transformation T from the complex z-plane to the complex w-plane is given by

$$
w=\frac{1}{z^{*}-2}, \quad z \neq 2 .
$$

(a) Show that the image in the w-plane of the line $\operatorname{Re}(z)=5$ in the z-plane, under T, is a circle.

Find its centre and radius.
The region represented by $\operatorname{Re}(z)>5$ in the z-plane is transformed under T into the region represented by R in the w-plane.
(b) Show the region R on an Argand diagram.
(c) Find the image in the w-plane under T of the half- $\operatorname{line} \arg (z-2)=\frac{\pi}{4}$ in the the z-plane.

