Solomon Practice Paper Pure Mathematics 6B

Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	5	
4	6	
5	11	
6	12	
7	14	
8	17	
Total:	75	

How I can achieve better:

1. Given that x is so small that terms in x^{3} and higher powers of x may be neglected, find the values of the constants a and b for which

$$
\frac{\ln (1+a x)}{1+b x}=3 x+\frac{3}{2} x^{2} .
$$

2. Given that

$$
|z+1-4 \mathbf{i}|=1
$$

(a) sketch, in an Argand diagram, the locus of z,
(b) find the maximum value of $\arg (z)$ in degrees to one decimal place.
3. (a) Show that

$$
\cosh (\mathbf{i} x)=\cos (x) \quad \text { where } \quad x \in \mathbb{R} .
$$

(b) Hence, or otherwise, solve the equation

$$
\cosh (\mathbf{i} x)=\mathrm{e}^{\mathbf{i} x}
$$

for $0 \leq x<2 \pi$.
4. Given that

$$
u_{n+2}=5 u_{n+1}-6 u_{n} \quad n \geq 1, \quad u_{1}=2 \quad \text { and } \quad u_{2}=4
$$

prove by induction that $u_{n}=2^{n}$ for all integers $n, n \geq 1$.
5.

$$
\mathbf{M}=\left(\begin{array}{lll}
1 & 2 & -1 \\
0 & 1 & -4 \\
x & 3 & -1
\end{array}\right)
$$

(a) Given that $\lambda=-1$ is an eigenvalue of \mathbf{M}, find the value of x.
(b) Show that $\lambda=-1$ is the only real eigenvalue of \mathbf{M}.
(c) Find an eigenvector corresponding to the eigenvalue $\lambda=-1$.
6. A student is looking at different methods of solving the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x y, \quad y=1 \quad \text { when } \quad x=0.2 .
$$

The first method the student tries is to use the approximation

$$
\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{0}}{h}
$$

twice with a step length of 0.1 to obtain an estimate for y at $x=0.4$.
(a) Find the value of the student's estimate for y at $x=0.4$.

The student then realises that the exact value of y at $x=0.4$ can be found using integration.
(b) Use integration to find the exact value of y at $x=0.4$.
(c) Find, correct to 1 decimal place, the percentage error in the estimated value in part (a).
7. (a) Given that $z=\cos (\theta)+\mathbf{i} \sin (\theta)$, show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos (n \theta) \quad \text { and } \quad z^{n}-\frac{1}{z^{n}}=2 \mathbf{i} \sin (n \theta)
$$

where n is a positive integer.
(b) Given that

$$
\cos ^{4}(\theta)+\sin ^{4}(\theta)=A \cos (4 \theta)+B
$$

find the values of the constants A and B.
(c) Hence find the exact value of

$$
\int_{0}^{\frac{\pi}{8}} \cos ^{4}(\theta)+\sin ^{4}(\theta) \mathrm{d} \theta
$$

8. The points A, B, C and D have coordinates $(3,-1,2),(-2,0,-1),(1,2,6)$ and $(-1,-5,8)$ respectively, relative to the origin O.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) Find the volume of the tetrahedron $A B C D$.

The plane Π contains the points A, B and C.
(c) Find a vector equation of Π in the form $\mathbf{r} . \mathbf{n}=p$.

The perpendicular from D to Π meets the plane at the point E.
(d) Find the coordinates of E.

