Solomon Practice Paper
Pure Mathematics 6A
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	7	
4	9	
5	11	
6	11	
7	11	
8	14	
Total:	75	

How I can achieve better:

1. With respect to a fixed origin O, the lines l_{1} and l_{2} are given by the equations

$$
\begin{aligned}
l_{1} & :[\mathbf{r}-(-3 \mathbf{i}+2 \mathbf{j}-\mathbf{k})] \times(\mathbf{i}+\mathbf{k})=0 \\
l_{2} & :[\mathbf{r}-(\mathbf{i}+\mathbf{j}+4 \mathbf{k})] \times(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})=0
\end{aligned}
$$

(a) Find $(\mathbf{i}+\mathbf{k}) \times(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$.
(b) Find the shortest distance between l_{1} and l_{2}.
2. Prove by induction that, for all $n \in \mathbb{Z}^{+}$,

$$
\sum_{r=1}^{n}\left(r^{2}+1\right) r!=n(n+1)!
$$

3. (a) Solve the equation

$$
z_{3}+27=0
$$

giving your answers in the form $r \mathrm{e}^{i \theta}$ where $r>0,-\pi<\theta \leq \pi$.
(b) Show the points representing your solutions on an Argand diagram.
4.

$$
A=\left(\begin{array}{ll}
2 & a \\
2 & b
\end{array}\right)
$$

The matrix A has eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=3$.
(a) Find the value of a and the value of b.

Using your values of a and b,
(b) for each eigenvalue, find a corresponding eigenvector,
(c) find a matrix \mathbf{P} such that

$$
\mathbf{P}^{T} \mathbf{A P}=\left(\begin{array}{cc}
-2 & 0 \\
0 & 3
\end{array}\right)
$$

5.

$$
\left(1+x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 x+\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=0
$$

and

$$
y=1, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=1
$$

at $x=-1$.
Find a series solution of the differential equation in ascending powers of $(x+1)$ up to and including the term in $(x+1)^{4}$.
6. The variable y satisfies the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2}
$$

with $y=1.2$ at $x=0.1$ and $y=0.9$ at $x=0.2$.
Use the approximations

$$
\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{-1}}{2 h} \quad \text { and } \quad\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0} \approx \frac{y_{1}-2 y_{0}+y_{-1}}{h^{2}}
$$

with a step length of 0.1 to estimate the values of y at $x=0.3$ and $x=0.4$ giving your answers to 3 significant figures.
7.

$$
\mathbf{M}=\left(\begin{array}{ccc}
2 & 1 & 1 \\
k & 4 & 3 \\
-1 & k & 2
\end{array}\right)
$$

(a) Find the determinant of \mathbf{M} in terms of k.
(b) Prove that \mathbf{M} is non-singular for all real values of k.
(c) Given that $k=3$, find \mathbf{M}^{-1}, showing each step of your working.

When $k=3$ the image of the vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ when transformed by \mathbf{M} is the vector $\left(\begin{array}{l}0 \\ 3 \\ 5\end{array}\right)$.
(d) Find the values of a, b and c.
8. A transformation T from the z-plane to the w-plane is defined by

$$
w=\frac{z+1}{\mathbf{i} z-1}, \quad z \neq-\mathbf{i},
$$

where $z=x+\mathbf{i} y, w=u+\mathbf{i} v$ and x, y, u and v are real.
T transforms the circle $|z|=1$ in the z-plane onto a straight line L in the w-plane.
(a) Find an equation of L giving your answer in terms of u and v.
(b) Show that T transforms the $\operatorname{lin} \operatorname{Im}(z)=0$ in the z-plane onto a circle C in the w-plane, giving the centre and radius of this circle.
(c) On a single Argand diagram sketch L and C.

